Skip to main content
Log in

Glycogen Synthase Kinase-3 as a Therapeutic Target for Cognitive Dysfunction in Neuropsychiatric Disorders

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) is involved in a broad range of cellular processes including cell proliferation, apoptosis and inflammation. It is now also increasingly acknowledged as having a role to play in cognitive-related processes such as neurogenesis, synaptic plasticity and neural cell survival. Cognitive impairment represents a major debilitating feature of many neurodegenerative and psychiatric disorders, including Alzheimer’s disease, mood disorders, schizophrenia and fragile X syndrome, as well as being a result of traumatic brain injury or cranial irradiation. Accordingly, GSK-3 has been identified as an important therapeutic target for cognitive impairment, and recent preclinical studies have yielded important evidence demonstrating that GSK-3 inhibitors may be useful therapeutic interventions for restoring cognitive function in some of these brain disorders. The current review summarises the role of GSK-3 as a regulator of cognitive-dependent functions, examines current preclinical and clinical evidence of the potential of GSK-3 inhibitors as therapeutic agents for cognitive impairments in neuropsychiatric disorders, and offers some insight into the current obstacles that are impeding the clinical use of selective GSK-3 inhibitors in the treatment of cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107(2):519–27.

    CAS  PubMed  Google Scholar 

  2. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29(2):95–102.

    CAS  PubMed  Google Scholar 

  3. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9(8):2431–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Green HF, Nolan YM. GSK-3 mediates the release of IL-1beta, TNF-alpha and IL-10 from cortical glia. Neurochem Int. 2012;61(5):666–71.

    CAS  PubMed  Google Scholar 

  5. Yao HB, Shaw PC, Wong CC, Wan DC. Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. J Chem Neuroanat. 2002;23(4):291–7.

    CAS  PubMed  Google Scholar 

  6. Lee SJ, Chung YH, Joo KM, Lim HC, Jeon GS, Kim D, et al. Age-related changes in glycogen synthase kinase 3beta (GSK3beta) immunoreactivity in the central nervous system of rats. Neurosci Lett. 2006;409(2):134–9.

    CAS  PubMed  Google Scholar 

  7. Kaidanovich-Beilin O, Woodgett JR. GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci. 2011;4:40.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, et al. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001;105(6):721–32.

    CAS  PubMed  Google Scholar 

  9. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86–90.

    CAS  PubMed  Google Scholar 

  10. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, et al. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet. 2002;31(1):47–54.

    CAS  PubMed  Google Scholar 

  11. Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem. 2001;78(6):1219–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Deisseroth K, Bito H, Tsien RW. Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron. 1996;16(1):89–101.

    CAS  PubMed  Google Scholar 

  13. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127–48.

    CAS  PubMed  Google Scholar 

  14. Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature. 1997;389(6654):966–70.

    CAS  PubMed  Google Scholar 

  15. Salinas PC, Zou Y. Wnt signaling in neural circuit assembly. Annu Rev Neurosci. 2008;31:339–58.

    CAS  PubMed  Google Scholar 

  16. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5.

    CAS  PubMed  Google Scholar 

  17. Aplin AE, Gibb GM, Jacobsen JS, Gallo JM, Anderton BH. In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3beta. J Neurochem. 1996;67(2):699–707.

    CAS  PubMed  Google Scholar 

  18. de Barreda EG, Perez M, Ramos PG, de Cristobal J, Martin-Maestro P, Moran A, et al. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis. 2010;37(3):622–9.

    Google Scholar 

  19. Kirschenbaum F, Hsu SC, Cordell B, McCarthy JV. Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J Biol Chem. 2001;276(33):30701–7.

    CAS  PubMed  Google Scholar 

  20. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC–beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.

    CAS  PubMed  Google Scholar 

  21. Hlsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2000;113(Pt 20):3545.

    PubMed  Google Scholar 

  22. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785–9.

    CAS  PubMed  Google Scholar 

  23. Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A. 2000;97(22):11960–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Goode N, Hughes K, Woodgett JR, Parker PJ. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem. 1992;267(24):16878–82.

    CAS  PubMed  Google Scholar 

  25. Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010;11(2):77–86.

    CAS  PubMed  Google Scholar 

  26. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17(5):1371–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104(6):1433–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lovestone S, Killick R, Di Forti M, Murray R. Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci. 2007;30(4):142–9.

    CAS  PubMed  Google Scholar 

  29. Li XH, Jope RS. Is glycogen synthase kinase-3 a central modulator in mood regulation? Neuropsychopharmacology. 2010;35(11):2143–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC, et al. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci. 2007;27(45):12211–20.

    CAS  PubMed  Google Scholar 

  31. Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB Life. 2009;61(5):516–21.

    CAS  PubMed  Google Scholar 

  32. Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3 beta in the brain but do not form tau filaments. J Neurochem. 2002;83(6):1529–33.

    CAS  PubMed  Google Scholar 

  33. Engel T, Hernandez F, Avila J, Lucas JJ. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci. 2006;26(19):5083–90.

    CAS  PubMed  Google Scholar 

  34. Kimura T, Yamashita S, Nakao S, Park JM, Murayama M, Mizoroki T, et al. GSK-3beta is required for memory reconsolidation in adult brain. PLoS One. 2008;3(10):e3540.

    PubMed Central  PubMed  Google Scholar 

  35. Dewachter I, Ris L, Jaworski T, Seymour CM, Kremer A, Borghgraef P, et al. GSK3 beta, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at Serine-9. Neurobiol Dis. 2009;35(2):193–200.

    CAS  PubMed  Google Scholar 

  36. Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996;6(12):1664–8.

    CAS  PubMed  Google Scholar 

  37. Phiel CJ, Klein PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol. 2001;41:789–813.

    CAS  PubMed  Google Scholar 

  38. Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;27(5):14.

    Google Scholar 

  39. Bhat RV, Budd SL. GSK3beta signalling: casting a wide net in Alzheimer’s disease. Neurosignals. 2002;11(5):251–61.

    CAS  PubMed  Google Scholar 

  40. Forlenza OV, de Paula VJ, Machado-Vieira R, Diniz BS, Gattaz WF. Does lithium prevent Alzheimer’s disease? Drugs Aging. 2012;29(5):335–42.

    CAS  PubMed  Google Scholar 

  41. Diniz BS, Machado-Vieira R, Forlenza OV. Lithium and neuroprotection: translational evidence and implications for the treatment of neuropsychiatric disorders. Neuropsychiatr Dis Treat. 2013;9:493–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G, et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry. 2003;8(2):195–208.

    PubMed  Google Scholar 

  43. Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci. 2007;27(8):1981–91.

    CAS  PubMed  Google Scholar 

  44. Toledo EM, Inestrosa NC. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry. 2010;15(3):272–85 (28).

    CAS  PubMed  Google Scholar 

  45. Zhang X, Heng X, Li T, Li L, Yang D, Du Y, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-beta production in an aged Alzheimer’s disease transgenic mouse model. J Alzheimers Dis. 2011;24(4):739–49.

    CAS  PubMed  Google Scholar 

  46. Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One. 2010;5(12):e14382.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW. Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A. 2009;106(43):18367–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Sudduth TL, Wilson JG, Everhart A, Colton CA, Wilcock DM. Lithium treatment of APPSwDI/NOS2−/− mice leads to reduced hyperphosphorylated tau, increased amyloid deposition and altered inflammatory phenotype. PLoS One. 2012;7(2):e31993.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol. 2007;170(5):1669–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Marin-Burgin A, Schinder AF. Requirement of adult-born neurons for hippocampus-dependent learning. Behav Brain Res. 2012;227(2):391–9.

    PubMed  Google Scholar 

  51. Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, et al. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009;35(3):359–67.

    CAS  PubMed  Google Scholar 

  52. Ding Y, Qiao A, Fan GH. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates beta-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2010;39(2):156–68.

    CAS  PubMed  Google Scholar 

  53. Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, et al. Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest. 2013;123(1):224–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Onishi T, Iwashita H, Uno Y, Kunitomo J, Saitoh M, Kimura E, et al. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. J Neurochem. 2011;119(6):1330–40.

    CAS  PubMed  Google Scholar 

  55. Noh MY, Chun K, Kang BY, Kim H, Park JS, Lee HC, et al. Newly developed glycogen synthase kinase-3 (GSK-3) inhibitors protect neuronal cells death in amyloid-beta induced cell model and in a transgenic mouse model of Alzheimer’s disease. Biochem Biophys Res Commun. 2013;435(2):274–81.

    CAS  PubMed  Google Scholar 

  56. Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem. 2013;288(2):1295–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hurtado DE, Molina-Porcel L, Carroll JC, Macdonald C, Aboagye AK, Trojanowski JQ, et al. Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer’s disease. J Neurosci. 2012;32(21):7392–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, et al. Antisense oligonucleotide against GSK-3beta in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med. 2014;67:387–95.

    CAS  PubMed  Google Scholar 

  59. Morales-Garcia JA, Luna-Medina R, Alonso-Gil S, Sanz-Sancristobal M, Palomo V, Gil C, et al. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci. 2012;3(11):963–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Jung HJ, Nam KN, Son MS, Kang H, Hong JW, Kim JW, et al. Indirubin-3′-oxime inhibits inflammatory activation of rat brain microglia. Neurosci Lett. 2011;487(2):139–43.

    CAS  PubMed  Google Scholar 

  61. Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270(5236):593–8.

    CAS  PubMed  Google Scholar 

  62. Sharma S, Taliyan R. Neuroprotective role of Indirubin-3′-monoxime, a GSKβ inhibitor in high fat diet induced cognitive impairment in mice. Biochem Biophys Res Commun. 2014;452(4):1009–15.

  63. King MR, Anderson NJ, Guernsey LS, Jolivalt CG. Glycogen synthase kinase-3 inhibition prevents learning deficits in diabetic mice. J Neurosci Res. 2013;91(4):506–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry. 2011;198(5):351–6.

    PubMed  Google Scholar 

  65. Terao T, Nakano H, Inoue Y, Okamoto T, Nakamura J, Iwata N. Lithium and dementia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(6):1125–8.

    CAS  PubMed  Google Scholar 

  66. Leyhe T, Eschweiler GW, Stransky E, Gasser T, Annas P, Basun H, et al. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer’s disease. J Alzheimers Dis. 2009;16(3):649–56.

    CAS  PubMed  Google Scholar 

  67. Nunes MA, Viel TA, Buck HS. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr Alzheimer Res. 2013;10(1):104–7.

    CAS  PubMed  Google Scholar 

  68. Macdonald A, Briggs K, Poppe M, Higgins A, Velayudhan L, Lovestone S. A feasibility and tolerability study of lithium in Alzheimer’s disease. Int J Geriatr Psychiatry. 2008;23(7):704–11.

    PubMed  Google Scholar 

  69. Pomara N. Lithium treatment in Alzheimer’s disease does not promote cognitive enhancement, but may exert long-term neuroprotective effects. Psychopharmacology (Berl). 2009;205(1):169–70.

    CAS  PubMed  Google Scholar 

  70. Hampel H, Ewers M, Burger K, Annas P, Mortberg A, Bogstedt A, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry. 2009;70(6):922–31.

    CAS  PubMed  Google Scholar 

  71. Lehmann SW, Lee J. Lithium-associated hypercalcemia and hyperparathyroidism in the elderly: what do we know? J Affect Disord. 2013;146(2):151–7.

    CAS  PubMed  Google Scholar 

  72. Sproule BA, Hardy BG, Shulman KI. Differential pharmacokinetics of lithium in elderly patients. Drugs Aging. 2000;16(3):165–77.

    CAS  PubMed  Google Scholar 

  73. Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem. 2012;287(2):893–904.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. del Ser T, Steinwachs KC, Gertz HJ, Andres MV, Gomez-Carrillo B, Medina M, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis. 2013;33(1):205–15.

    PubMed  Google Scholar 

  75. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996;93(16):8455–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Li X, Friedman AB, Zhu W, Wang L, Boswell S, May RS, et al. Lithium regulates glycogen synthase kinase-3beta in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder. Biol Psychiatry. 2007;61(2):216–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. De Sarno P, Li X, Jope RS. Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology. 2002;43(7):1158–64.

    PubMed  Google Scholar 

  78. Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci U S A. 1999;96(15):8745–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ronai Z, Kovacs-Nagy R, Szantai E, Elek Z, Sasvari-Szekely M, Faludi G, et al. Glycogen synthase kinase 3 beta gene structural variants as possible risk factors of bipolar depression. Am J Med Genet Part B Neuropsychiatr Genet. 2014;165(3):217–22.

    CAS  Google Scholar 

  80. Lachman HM, Pedrosa E, Petruolo OA, Cockerham M, Papolos A, Novak T, et al. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(3):259–65.

    CAS  PubMed  Google Scholar 

  81. Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett. 2005;376(1):51–5.

    CAS  PubMed  Google Scholar 

  82. Szczepankiewicz A, Skibinska M, Hauser J, Slopien A, Leszczynska-Rodziewicz A, Kapelski P, et al. Association analysis of the GSK-3beta T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology. 2006;53(1):51–6.

    CAS  PubMed  Google Scholar 

  83. Tang H, Shen N, Jin H, Liu D, Miao X, Zhu LQ. GSK-3beta polymorphism discriminates bipolar disorder and schizophrenia: a systematic meta-analysis. Mol Neurobiol. 2013;48(3):404–11.

    CAS  PubMed  Google Scholar 

  84. Lin YF, Huang MC, Liu HC. Glycogen synthase kinase 3 beta gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J Affect Disord. 2013;147(1–3):401–6.

    CAS  PubMed  Google Scholar 

  85. Lee KY, Ahn YM, Joo EJ, Jeong SH, Chang JS, Kim SC, et al. No association of two common SNPs at position-1727 A/T, -50 C/T of GSK-3 beta polymorphisms with schizophrenia and bipolar disorder of Korean population. Neurosci Lett. 2006;395(2):175–8.

    CAS  PubMed  Google Scholar 

  86. Nishiguchi N, Breen G, Russ C, Clair D, Collier D. Association analysis of the glycogen synthase kinase-3beta gene in bipolar disorder. Neurosci Lett. 2006;394(3):243–5.

    CAS  PubMed  Google Scholar 

  87. Li XH, Liu M, Cai ZJ, Wang G, Li XH. Regulation of glycogen synthase kinase-3 during bipolar mania treatment. Bipolar Disord. 2010;12(7):741–52.

    PubMed Central  PubMed  Google Scholar 

  88. Polter A, Beurel E, Yang S, Garner R, Song L, Miller CA, et al. Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology. 2010;35(8):1761–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Pandey GN, Rizavi HS, Tripathi M, Ren X. Region-specific dysregulation of glycogen synthase kinase-3beta and beta-catenin in the postmortem brains of subjects with bipolar disorder and schizophrenia. Bipolar Disord. Epub 2014 Jul 8. doi:10.1111/bdi.12228.

  90. Lesort M, Greendorfer A, Stockmeier C, Johnson GV, Jope RS. Glycogen synthase kinase-3beta, beta-catenin, and tau in postmortem bipolar brain. J Neural Transm. 1999;106(11–12):1217–22.

    CAS  PubMed  Google Scholar 

  91. Kozlovsky N, Belmaker RH, Agam G. Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry. 2000;157(5):831–3.

    CAS  PubMed  Google Scholar 

  92. O’Brien WT, Harper AD, Jove F, Woodgett JR, Maretto S, Piccolo S, et al. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci. 2004;24(30):6791–8.

    PubMed  Google Scholar 

  93. Bersudsky Y, Shaldubina A, Kozlovsky N, Woodgett JR, Agam G, Belmaker RH. Glycogen synthase kinase-3 beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results. Behav Pharmacol. 2008;19(3):217–24.

    CAS  PubMed  Google Scholar 

  94. Kessing LV, Forman JL, Andersen PK. Does lithium protect against dementia? Bipolar Disord. 2010;12(1):87–94.

    PubMed  Google Scholar 

  95. Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry. 2007;190:359–60.

    PubMed  Google Scholar 

  96. Lopez-Jaramillo C, Lopera-Vasquez J, Ospina-Duque J, Garcia J, Gallo A, Cortez V, et al. Lithium treatment effects on the neuropsychological functioning of patients with bipolar I disorder. J Clin Psychiatry. 2010;71(8):1055–60.

    CAS  PubMed  Google Scholar 

  97. Schouws SN, Stek ML, Comijs HC, Beekman AT. Risk factors for cognitive impairment in elderly bipolar patients. J Affect Disord. 2010;125(1–3):330–5.

    PubMed  Google Scholar 

  98. Joffe RT, MacDonald C, Kutcher SP. Lack of differential cognitive effects of lithium and carbamazepine in bipolar affective disorder. J Clin Psychopharmacol. 1988;8(6):425–8.

    CAS  PubMed  Google Scholar 

  99. Squire LR, Judd LL, Janowsky DS, Huey LY. Effects of lithium carbonate on memory and other cognitive functions. Am J Psychiatry. 1980;137(9):1042–6.

    CAS  PubMed  Google Scholar 

  100. Engelsmann F, Katz J, Ghadirian AM, Schachter D. Lithium and memory: a long-term follow-up study. J Clin Psychopharmacol. 1988;8(3):207–12.

    CAS  PubMed  Google Scholar 

  101. El-Badri SM, Ashton CH, Moore PB, Marsh VR, Ferrier IN. Electrophysiological and cognitive function in young euthymic patients with bipolar affective disorder. Bipolar Disord. 2001;3(2):79–87.

    CAS  PubMed  Google Scholar 

  102. Clark L, Iversen SD, Goodwin GM. Sustained attention deficit in bipolar disorder. Br J Psychiatry. 2002;180:313–9.

    PubMed  Google Scholar 

  103. Altshuler LL, Ventura J, van Gorp WG, Green MF, Theberge DC, Mintz J. Neurocognitive function in clinically stable men with bipolar I disorder or schizophrenia and normal control subjects. Biol Psychiatry. 2004;56(8):560–9.

    PubMed  Google Scholar 

  104. Mur M, Portella MJ, Martinez-Aran A, Pifarre J, Vieta E. Neuropsychological profile in bipolar disorder: a preliminary study of monotherapy lithium-treated euthymic bipolar patients evaluated at a 2-year interval. Acta Psychiatr Scand. 2008;118(5):373–81.

    CAS  PubMed  Google Scholar 

  105. Honig A, Arts BM, Ponds RW, Riedel WJ. Lithium induced cognitive side-effects in bipolar disorder: a qualitative analysis and implications for daily practice. Int Clin Psychopharmacol. 1999;14(3):167–71.

    CAS  PubMed  Google Scholar 

  106. Pachet AK, Wisniewski AM. The effects of lithium on cognition: an updated review. Psychopharmacol (Berl). 2003;170(3):225–34.

    CAS  Google Scholar 

  107. Dias VV, Balanza-Martinez V, Soeiro-de-Souza MG, Moreno RA, Figueira ML, Machado-Vieira R, et al. Pharmacological approaches in bipolar disorders and the impact on cognition: a critical overview. Acta Psychiatr Scand. 2012;126(5):315–31.

    CAS  PubMed  Google Scholar 

  108. Savitz JB, van der Merwe L, Stein DJ, Solms M, Ramesar RS. Neuropsychological task performance in bipolar spectrum illness: genetics, alcohol abuse, medication and childhood trauma. Bipolar Disord. 2008;10(4):479–94.

    PubMed  Google Scholar 

  109. Senturk V, Goker C, Bilgic A, Olmez S, Tugcu H, Oncu B, et al. Impaired verbal memory and otherwise spared cognition in remitted bipolar patients on monotherapy with lithium or valproate. Bipolar Disord. 2007;9(Suppl 1):136–44.

    PubMed  Google Scholar 

  110. Wingo AP, Wingo TS, Harvey PD, Baldessarini RJ. Effects of lithium on cognitive performance: a meta-analysis. J Clin Psychiatry. 2009;70(11):1588–97.

    CAS  PubMed  Google Scholar 

  111. Rybakowski JK, Suwalska A. Excellent lithium responders have normal cognitive functions and plasma BDNF levels. Int J Neuropsychopharmacol. 2010;13(5):617–22.

    CAS  PubMed  Google Scholar 

  112. Goldberg JF, Chengappa KN. Identifying and treating cognitive impairment in bipolar disorder. Bipolar Disord. 2009;11(Suppl 2):123–37.

    PubMed  Google Scholar 

  113. Mur M, Portella MJ, Martinez-Aran A, Pifarre J, Vieta E. Persistent neuropsychological deficit in euthymic bipolar patients: executive function as a core deficit. J Clin Psychiatry. 2007;68(7):1078–86.

    PubMed  Google Scholar 

  114. Carvalho AF, Cavalcante JL, Castelo MS, Lima MC. Augmentation strategies for treatment-resistant depression: a literature review. J Clin Pharm Ther. 2007;32(5):415–28.

    CAS  PubMed  Google Scholar 

  115. O’Leary OF, Dinan TG, Cryan JF. Faster, better, stronger: towards new antidepressant therapeutic strategies. Eur J Pharmacol. Epub 2014 Aug 1. doi:10.1016/j.ejphar.2014.07.046.

  116. Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology. 2004;29(8):1426–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Zerbi F, Clemente E, Bezzi G, Tosca P. Memory performances in depressed patients during prophylactic treatment with lithium salts. Bibl Psychiatr. 1981;161:190–6.

    PubMed  Google Scholar 

  118. Stoudemire A, Hill CD, Lewison BJ, Marquardt M, Dalton S. Lithium intolerance in a medical-psychiatric population. Gen Hosp Psychiatry. 1998;20(2):85–90.

    CAS  PubMed  Google Scholar 

  119. Calev A, Korin Y, Shapira B, Kugelmass S, Lerer B. Verbal and non-verbal recall by depressed and euthymic affective patients. Psychol Med. 1986;16(4):789–94.

    CAS  PubMed  Google Scholar 

  120. Cowen P, Sherwood AC. The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. J Psychopharmacol. 2013;27(7):575–83.

    PubMed  Google Scholar 

  121. Monleon S, Vinader-Caerols C, Arenas MC, Parra A. Antidepressant drugs and memory: insights from animal studies. Eur Neuropsychopharmacol. 2008;18(4):235–48.

    CAS  PubMed  Google Scholar 

  122. Hendrie HC, Tu W, Tabbey R, Purnell CE, Ambuehl RJ, Callahan CM. Health outcomes and cost of care among older adults with schizophrenia: a 10-year study using medical records across the continuum of care. Am J Geriatr Psychiatry. 2014;22(5):427–36.

    PubMed  Google Scholar 

  123. Beasley C, Cotter D, Khan N, Pollard C, Sheppard P, Varndell I, et al. Glycogen synthase kinase-3 beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett. 2001;302(2–3):117–20.

    CAS  PubMed  Google Scholar 

  124. Kozlovsky N, Shanon-Weickert C, Tomaskovic-Crook E, Kleinman JE, Belmaker RH, Agam G. Reduced GSK-3beta mRNA levels in postmortem dorsolateral prefrontal cortex of schizophrenic patients. J Neural Transm. 2004;111(12):1583–92.

    CAS  PubMed  Google Scholar 

  125. Kozlovsky N, Belmaker RH, Agam G. Low GSK-3 activity in frontal cortex of schizophrenic patients. Schizophr Res. 2001;52(1–2):101–5.

    CAS  PubMed  Google Scholar 

  126. Nadri C, Dean B, Scarr E, Agam G. GSK-3 parameters in postmortem frontal cortex and hippocampus of schizophrenic patients. Schizophr Res. 2004;71(2–3):377–82.

    PubMed  Google Scholar 

  127. Blasi G, Napolitano F, Ursini G, Di Giorgio A, Caforio G, Taurisano P, et al. Association of GSK-3beta genetic variation with GSK-3beta expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia. Am J Psychiatry. 2013;170(8):868–76.

    PubMed  Google Scholar 

  128. Benedetti F, Poletti S, Radaelli D, Bernasconi A, Cavallaro R, Falini A, et al. Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase 3-beta activity. Genes Brain Behav. 2010;9(4):365–71.

    CAS  PubMed  Google Scholar 

  129. Kozlovsky N, Regenold WT, Levine J, Rapoport A, Belmaker RH, Agam G. GSK-3beta in cerebrospinal fluid of schizophrenia patients. J Neural Transm. 2004;111(8):1093–8.

    CAS  PubMed  Google Scholar 

  130. Nadri C, Kozlovsky N, Agam G, Bersudsky Y. GSK-3 parameters in lymphocytes of schizophrenic patients. Psychiatry Res. 2002;112(1):51–7.

    CAS  PubMed  Google Scholar 

  131. Ferreira AS, Raposo NR, Sallet PC, Van de Bilt MT, Machado-Vieira R, Talib LL, et al. Lower phosphorylated glycogen synthase kinase-3B levels in platelets of patients with schizophrenia: increment by olanzapine treatment. Eur Arch Psychiatry Clin Neurosci. Epub 2014 May 15.

  132. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004;36(2):131–7.

    CAS  PubMed  Google Scholar 

  133. Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, et al. Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry. 2004;56(9):698–700.

    CAS  PubMed  Google Scholar 

  134. Schwab SG, Hoefgen B, Hanses C, Hassenbach MB, Albus M, Lerer B, et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry. 2005;58(6):446–50.

    CAS  PubMed  Google Scholar 

  135. Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry. 2008;63(5):449–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, et al. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A. 2008;105(4):1333–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Beaulieu JM. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci. 2012;37(1):7–16.

    PubMed Central  PubMed  Google Scholar 

  138. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A. 2004;101(14):5099–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Polter AM, Yang S, Jope RS, Li X. Functional significance of glycogen synthase kinase-3 regulation by serotonin. Cell Signal. 2012;24(1):265–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Zhou W, Chen L, Paul J, Yang S, Li F, Sampson K, et al. The effects of glycogen synthase kinase-3beta in serotonin neurons. PLoS One. 2012;7(8):e43262.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Chen L, Zhou W, Chen PC, Gaisina I, Yang S, Li X. Glycogen synthase kinase-3 beta is a functional modulator of serotonin-1B receptors. Mol Pharmacol. 2011;79(6):974–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Chen L, Salinas GD, Li X. Regulation of serotonin 1B receptor by glycogen synthase kinase-3. Mol Pharmacol. 2009;76(6):1150–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Li X, Rosborough KM, Friedman AB, Zhu W, Roth KA. Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int J Neuropsychopharmacol. 2007;10(1):7–19.

    PubMed  Google Scholar 

  144. Park SW, Phuong VT, Lee CH, Lee JG, Seo MK, Cho HY, et al. Effects of antipsychotic drugs on BDNF, GSK-3beta, and beta-catenin expression in rats subjected to immobilization stress. Neurosci Res. 2011;71(4):335–40.

    CAS  PubMed  Google Scholar 

  145. Sutton LP, Rushlow WJ. The effects of neuropsychiatric drugs on glycogen synthase kinase-3 signaling. Neuroscience. 2011;29(199):116–24.

    Google Scholar 

  146. Alimohamad H, Rajakumar N, Seah YH, Rushlow W. Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry. 2005;57(5):533–42.

    CAS  PubMed  Google Scholar 

  147. Roh MS, Seo MS, Kim Y, Kim SH, Jeon WJ, Ahn YM, et al. Haloperidol and clozapine differentially regulate signals upstream of glycogen synthase kinase 3 in the rat frontal cortex. Exp Mol Med. 2007;39(3):353–60.

    CAS  PubMed  Google Scholar 

  148. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell. 2005;122(2):261–73.

    CAS  PubMed  Google Scholar 

  149. Chan MH, Chiu PH, Lin CY, Chen HH. Inhibition of glycogen synthase kinase-3 attenuates psychotomimetic effects of ketamine. Schizophr Res. 2012;136(1–3):96–103.

    PubMed  Google Scholar 

  150. Lipina TV, Palomo V, Gil C, Martinez A, Roder JC. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology. 2013;64:205–14.

    CAS  PubMed  Google Scholar 

  151. Min WW, Yuskaitis CJ, Yan QJ, Sikorski C, Chen SQ, Jope RS, et al. Elevated glycogen synthase kinase-3 activity in Fragile X mice: Key metabolic regulator with evidence for treatment potential. Neuropharmacology. 2009;56(2):463–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol. 2010;79(4):632–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Mines MA, Jope RS. Glycogen synthase kinase-3: a promising therapeutic target for fragile X syndrome. Front Mol Neurosci. 2011;4:35.

    PubMed Central  PubMed  Google Scholar 

  154. Guo W, Murthy AC, Zhang L, Johnson EB, Schaller EG, Allan AM, et al. Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum Mol Genet. 2012;21(3):681–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Franklin AV, King MK, Palomo V, Martinez A, McMahon LL, Jope RS. Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice. Biol Psychiatry. 2014;75(3):198–206.

    CAS  PubMed  Google Scholar 

  156. Berry-Kravis E, Sumis A, Hervey C, Nelson M, Porges SW, Weng N, et al. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr. 2008;29(4):293–302.

    PubMed  Google Scholar 

  157. Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis. 2013;13(11):976–86.

    PubMed Central  PubMed  Google Scholar 

  158. Crews L, Patrick C, Achim CL, Everall IP, Masliah E. Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci. 2009;10(3):1045–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den Brande G, et al. Lithium improves HIV-associated neurocognitive impairment. AIDS. 2006;20(14):1885–8.

    CAS  PubMed  Google Scholar 

  160. Yu F, Zhang Y, Chuang DM. Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma. 2012;29(13):2342–51.

    PubMed Central  PubMed  Google Scholar 

  161. Roberts GW, Gentleman SM, Lynch A, Graham DI. beta A4 amyloid protein deposition in brain after head trauma. Lancet. 1991;338(8780):1422–3.

    CAS  PubMed  Google Scholar 

  162. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1994;57(4):419–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Leeds PR, Yu F, Wang Z, Chiu CT, Zhang Y, Leng Y, et al. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem Neurosci. Epub 2014 Apr 11.

  164. Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, et al. Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One. 2011;6(9):e24648.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Zhu ZF, Wang QG, Han BJ, William CP. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull. 2010;83(5):272–7.

    CAS  PubMed  Google Scholar 

  166. Khasraw M, Ashley D, Wheeler G, Berk M. Using lithium as a neuroprotective agent in patients with cancer. BMC Med. 2012;2:10.

    Google Scholar 

  167. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805–9.

    CAS  PubMed  Google Scholar 

  168. Quiroz JA, Machado-Vieira R, Zarate CA Jr, Manji HK. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62(1):50–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Thotala DK, Hallahan DE, Yazlovitskaya EM. Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res. 2008;68(14):5859–68.

    CAS  PubMed  Google Scholar 

  170. Yazlovitskaya EM, Edwards E, Thotala D, Fu A, Osusky KL, Whetsell WO Jr, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–86.

    CAS  PubMed  Google Scholar 

  171. Malaterre J, McPherson CS, Denoyer D, Lai E, Hagekyriakou J, Lightowler S, et al. Enhanced lithium-induced brain recovery following cranial irradiation is not impeded by inflammation. Stem Cells Transl Med. 2012;1(6):469–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, et al. Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 2007;98(9):1388–93.

    CAS  PubMed  Google Scholar 

  173. Remsing Rix LL, Kuenzi BM, Luo Y, Remily-Wood E, Kinose F, Wright G, et al. GSK3 alpha and beta are new functionally relevant targets of tivantinib in lung cancer cells. ACS Chem Biol. 2014;9(2):353–8.

    CAS  PubMed  Google Scholar 

  174. Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B. Lithium suppresses cell proliferation by interrupting E2F–DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate. 2007;67(9):976–88.

    CAS  PubMed  Google Scholar 

  175. Cohen Y, Chetrit A, Sirota P, Modan B. Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med Oncol. 1998;15(1):32–6.

    CAS  PubMed  Google Scholar 

  176. Wang JS, Wang CL, Wen JF, Wang YJ, Hu YB, Ren HZ. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest. World J Gastroenterol. 2008;14(25):3982–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Li H, Huang K, Liu X, Liu J, Lu X, Tao K, et al. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3beta/NF-kappaB signaling pathway. Oxid Med Cell Longev. 2014;2014:241864.

    PubMed Central  PubMed  Google Scholar 

  178. Suganthi M, Sangeetha G, Gayathri G. Ravi Sankar B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). Biol Trace Elem Res. 2012;150(1–3):477–86.

    PubMed  Google Scholar 

  179. Eldar-Finkelman H, Martinez A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci. 2011;4:32.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, et al. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem. 2001;276(1):251–60.

    CAS  PubMed  Google Scholar 

  181. Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem. 2003;278(46):45937–45.

    CAS  PubMed  Google Scholar 

  182. Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000;7(10):793–803.

    CAS  PubMed  Google Scholar 

  183. Silva T, Reis J, Teixeira J, Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev. 2014;15C:116–45.

    Google Scholar 

  184. Kunick C, Lauenroth K, Leost M, Meijer L, Lemcke T. 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Bioorg Med Chem Lett. 2004;14(2):413–6.

    CAS  PubMed  Google Scholar 

  185. Martinez A, Alonso M, Castro A, Perez C, Moreno FJ. First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem. 2002;45(6):1292–9.

    CAS  PubMed  Google Scholar 

  186. Palomo V, Soteras I, Perez DI, Perez C, Gil C, Campillo NE, et al. Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J Med Chem. 2011;54(24):8461–70.

    CAS  PubMed  Google Scholar 

  187. Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther. 2003;305(3):974–80.

    CAS  PubMed  Google Scholar 

  188. Saitoh M, Kunitomo J, Kimura E, Hayase Y, Kobayashi H, Uchiyama N, et al. Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta. Bioorg Med Chem. 2009;17(5):2017–29.

    CAS  PubMed  Google Scholar 

  189. Saitoh M, Kunitomo J, Kimura E, Iwashita H, Uno Y, Onishi T, et al. 2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3 beta with good brain permeability. J Med Chem. 2009;52(20):6270–86.

    CAS  PubMed  Google Scholar 

  190. Shaw ED, Stokes PE, Mann JJ, Manevitz AZ. Effects of lithium carbonate on the memory and motor speed of bipolar outpatients. J Abnorm Psychol. 1987;96(1):64–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in Olivia O’Leary’s and Yvonne Nolan’s laboratories is currently supported by a Grant from Science Foundation Ireland (12/IA/1537) and the University College Cork (UCC) Strategic Research Fund. No funding was specifically received for the preparation of this article. Olivia O’Leary and Yvonne Nolan declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Nolan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Leary, O., Nolan, Y. Glycogen Synthase Kinase-3 as a Therapeutic Target for Cognitive Dysfunction in Neuropsychiatric Disorders. CNS Drugs 29, 1–15 (2015). https://doi.org/10.1007/s40263-014-0213-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0213-z

Keywords

Navigation