Skip to main content
Log in

Presynaptic Dopaminergic Function: Implications for Understanding Treatment Response in Psychosis

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

All current antipsychotic drugs block dopamine (DA) receptors, but the nature of the DA dysfunction in schizophrenia has not been clear. However, consistent evidence now shows that presynaptic dopaminergic function is altered in schizophrenia, specifically in terms of increased DA synthesis capacity, baseline synaptic DA levels, and DA release. Furthermore, presynaptic dopaminergic function is already elevated in prodromal patients who later developed the disorder. Currently available antipsychotics act on postsynaptic receptors, not targeting presynaptic DA abnormalities. This has implications for understanding response and developing new treatments. The lack of normalization of the abnormal presynaptic function could explain why discontinuation is likely to lead to relapse, because the major dopaminergic function persists, meaning that once treatment stops there is nothing to oppose the dysregulated dopamine function reinstating symptoms. Furthermore, it suggests that drugs that target presynaptic dopaminergic function may constitute new treatment possibilities for schizophrenic patients, in particular, for those in whom antipsychotics are poorly effective. In addition, the longitudinal changes with the onset of psychosis indicate the potential to target a defined dynamic neurochemical abnormality to prevent the onset of psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S, et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry. 2007;64(1):19–28.

    PubMed  Google Scholar 

  2. Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2(5):e141.

    PubMed Central  PubMed  Google Scholar 

  3. an der Heiden W, Hafner H. The epidemiology of onset and course of schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2000;250(6):292–303.

    CAS  PubMed  Google Scholar 

  4. Arndt S, Andreasen NC, Flaum M, Miller D, Nopoulos P. A longitudinal study of symptom dimensions in schizophrenia. Prediction and patterns of change. Arch Gen Psychiatry. 1995;52(5):352–60.

    CAS  PubMed  Google Scholar 

  5. Barch DM. Neuropsychological abnormalities in schizophrenia and major mood disorders: similarities and differences. Curr Psychiatry Rep. 2009;11(4):313–9.

    PubMed Central  PubMed  Google Scholar 

  6. Andreasen NC, Arndt S, Alliger R, Miller D, Flaum M. Symptoms of schizophrenia. Methods, meanings, and mechanisms. Arch Gen Psychiatry. 1995;52(5):341–51.

    CAS  PubMed  Google Scholar 

  7. Klosterkotter J, Schultze-Lutter F, Ruhrmann S. Kraepelin and psychotic prodromal conditions. Eur Arch Psychiatry Clin Neurosci. 2008;258(Suppl 2):74–84.

    PubMed  Google Scholar 

  8. Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell’Olio M, et al. Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N Z JPsychiatry. 2005;39(11–12):964–71.

    Google Scholar 

  9. Klosterkotter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F. Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry. 2001;58(2):158–64.

    CAS  PubMed  Google Scholar 

  10. Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Cannon T, Ventura J, et al. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull. 2003;29(4):703–15.

    PubMed  Google Scholar 

  11. Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton M, Barale F, et al. Predicting psychosis: a meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):1–10.

    Google Scholar 

  12. van Rossum JM. The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966;160:492–4.

    PubMed  Google Scholar 

  13. Grace AALD, Buffalari DM. Dopamine—CNS pathways and neurophysiology. Pittsburgh: University of Pittsburgh; 2009.

    Google Scholar 

  14. Cumming P, Gjedde A. Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms. Synapse. 1998;29(1):37–61.

    CAS  PubMed  Google Scholar 

  15. Smolders I, De Klippel N, Sarre S, Ebinger G, Michotte Y. Tonic GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. Eur J Pharmacol. 1995;284(1–2):83–91.

    CAS  PubMed  Google Scholar 

  16. Grace AA, Bunney BS. Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res. 1985;333(2):271–84.

    CAS  PubMed  Google Scholar 

  17. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci Off J Soc Neurosci. 1984;4(11):2866–76.

    CAS  Google Scholar 

  18. Palermo-Neto J. Dopaminergic systems. Dopamine receptors. Psychiatr Clin N Am. 1997;20(4):705–21.

    CAS  Google Scholar 

  19. Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 1994;11(4):245–56.

    CAS  Google Scholar 

  20. Bertocci B, Miggiano V, Da Prada M, Dembic Z, Lahm HW, Malherbe P. Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci USA. 1991;88(4):1416–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Rivett AJ, Roth JA. Kinetic studies on the O-methylation of dopamine by human brain membrane-bound catechol O-methyltransferase. Biochemistry. 1982;21(8):1740–2.

    CAS  PubMed  Google Scholar 

  22. O’Carroll AM, Fowler CJ, Phillips JP, Tobbia I, Tipton KF. The deamination of dopamine by human brain monoamine oxidase. Specificity for the two enzyme forms in seven brain regions. Naunyn-Schmiedeberg’s Arch Pharmacol. 1983;322(3):198–202.

    Google Scholar 

  23. Montagu KA. Catechol compounds in rat tissues and in brains of different animals. Nature. 1957;180(4579):244–5.

    CAS  PubMed  Google Scholar 

  24. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature. 1957;180:1200.

    CAS  PubMed  Google Scholar 

  25. Carlsson A, Hillarp NA. On the state of the catechol amines of the adrenal medullary granules. Acta Physiol Scand. 1958;44(2):163–9.

    CAS  PubMed  Google Scholar 

  26. Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr. 1960;15(38):1236–9.

    Google Scholar 

  27. Lewis DA, Akil M. Cortical dopamine in schizophrenia: strategies for postmortem studies. J Psychiatr Res. 1997;31(2):175–95.

    CAS  PubMed  Google Scholar 

  28. Harrison PJ. Postmortem studies in schizophrenia. Dialogues Clin Neurosci. 2000;2(4):349–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Haberland N, Hetey L. Studies in postmortem dopamine uptake. II. Alterations of the synaptosomal catecholamine uptake in postmortem brain regions in schizophrenia. J Neural Transm. 1987;68(3–4):303–13.

    CAS  PubMed  Google Scholar 

  30. Widerlov E. A critical appraisal of CSF monoamine metabolite studies in schizophrenia. Ann N Y Acad Sci. 1988;537:309–23.

    CAS  PubMed  Google Scholar 

  31. Lindstrom LH. Low HVA and normal 5HIAA CSF levels in drug-free schizophrenic patients compared to healthy volunteers: correlations to symptomatology and family history. Psychiatry Res. 1985;14(4):265–73.

    CAS  PubMed  Google Scholar 

  32. Harnryd C, Bjerkenstedt L, Gullberg B, Oxenstierna G, Sedvall G, Wiesel FA. Time course for effects of sulpiride and chlorpromazine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic patients. Acta Psychiatr Scand Suppl. 1984;311:75–92.

    CAS  PubMed  Google Scholar 

  33. Post RM, Fink E, Carpenter WT Jr, Goodwin FK. Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry. 1975;32(8):1063–9.

    CAS  PubMed  Google Scholar 

  34. Lindstrom LH, Besev G, Gunne LM, Terenius L. CSF levels of receptor-active endorphins in schizophrenic patients: correlations with symptomatology and monoamine metabolites. Psychiatry Res. 1986;19(2):93–100.

    CAS  PubMed  Google Scholar 

  35. Avelar AJ, Juliano SA, Garris PA. Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms. J Neurochem. 2013;125(3):373–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology. 1987;91(4):415–33.

    CAS  PubMed  Google Scholar 

  37. Anderson EW. Benzedrine. Br Med J. 1938;2(4044):60–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Bell DS. The experimental reproduction of amphetamine psychosis. Arch Gen Psychiatry. 1973;29(1):35–40.

    CAS  PubMed  Google Scholar 

  39. Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, et al. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA. 1994;91(24):11651–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA. 1996;93(17):9235–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000;97(14):8104–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Laruelle M, Abi-Dargham A, van Dyck C, Gil R, D’Souza DC, Krystal J, et al. Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I]beta-CIT. Biol Psychiatry. 2000;47(5):371–9.

    CAS  PubMed  Google Scholar 

  43. Crawley JC, Owens DG, Crow TJ, Poulter M, Johnstone EC, Smith T, et al. Dopamine D2 receptors in schizophrenia studied in vivo. Lancet. 1986;2(8500):224–5.

    CAS  PubMed  Google Scholar 

  44. Egerton A, Mehta MA, Montgomery AJ, Lappin JM, Howes OD, Reeves SJ, et al. The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neurosci Biobehav Rev. 2009;33(7):1109–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49(7):538–44.

    CAS  PubMed  Google Scholar 

  46. Willeit M, Ginovart N, Graff A, Rusjan P, Vitcu I, Houle S, et al. First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: a [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2008;33(2):279–89.

    CAS  Google Scholar 

  47. Yoder KK, Hutchins GD, Morris ED, Brashear A, Wang C, Shekhar A. Dopamine transporter density in schizophrenic subjects with and without tardive dyskinesia. Schizophr Res. 2004;71(2–3):371–5.

    PubMed  Google Scholar 

  48. Laakso A, Bergman J, Haaparanta M, Vilkman H, Solin O, Hietala J. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects. Synapse. 1998;28(3):244–50.

    CAS  PubMed  Google Scholar 

  49. Taylor SF, Koeppe RA, Tandon R, Zubieta JK, Frey KA. In vivo measurement of the vesicular monoamine transporter in schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2000;23(6):667–75.

    CAS  Google Scholar 

  50. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol. 1963;20:140–4.

    CAS  Google Scholar 

  51. Seeman P, Chau-Wong M, Tedesco J, Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA. 1975;72(11):4376–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Creese I, Burt D, Snyder S. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192:481–3.

    CAS  PubMed  Google Scholar 

  53. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69(8):776–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Lieberman JA, Kinon BJ, Loebel AD. Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull. 1990;16(1):97–110.

    CAS  PubMed  Google Scholar 

  55. Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: a review. Schizophr Bull. 1976;2(1):19–76.

    CAS  PubMed  Google Scholar 

  56. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148(11):1474–86.

    CAS  PubMed  Google Scholar 

  57. Weinberger DR, Berman KF, Illowsky BP. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry. 1988;45(7):609–15.

    CAS  PubMed  Google Scholar 

  58. Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol. 1999;13(4):358–71.

    CAS  PubMed  Google Scholar 

  59. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA. 1997;94(6):2569–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M. Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol Psychiatry. 2009;65(12):1091–3.

    CAS  PubMed  Google Scholar 

  61. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry. 1998;155(6):761–7.

    CAS  PubMed  Google Scholar 

  62. Villemagne VL, Wong DF, Yokoi F, Stephane M, Rice KC, Matecka D, et al. GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans. Synapse. 1999;33(4):268–73.

    CAS  PubMed  Google Scholar 

  63. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry. 1999;46(1):56–72.

    CAS  PubMed  Google Scholar 

  64. Voruganti LN, Awad AG. Subjective and behavioural consequences of striatal dopamine depletion in schizophrenia—findings from an in vivo SPECT study. Schizophr Res. 2006;88(1–3):179–86.

    PubMed  Google Scholar 

  65. Meisenzahl EM, Schmitt GJ, Scheuerecker J, Moller HJ. The role of dopamine for the pathophysiology of schizophrenia. Int Rev Psychiatry. 2007;19(4):337–45.

    CAS  PubMed  Google Scholar 

  66. Piccini PP. Dopamine transporter: basic aspects and neuroimaging. Mov Disord. 2003;18((Suppl 7)):S3–8.

    PubMed  Google Scholar 

  67. Chen KC, Yang YK, Howes O, Lee IH, Landau S, Yeh TL, et al. Striatal dopamine transporter availability in drug-naive patients with schizophrenia: a case-control SPECT study with [(99m)Tc]-TRODAT-1 and a meta-analysis. Schizophr Bull. 2013;39(2):378–86.

    PubMed Central  PubMed  Google Scholar 

  68. Moore RY, Whone AL, McGowan S, Brooks DJ. Monoamine neuron innervation of the normal human brain: an 18F-DOPA PET study. Brain Res. 2003;982(2):137–45.

    CAS  PubMed  Google Scholar 

  69. Howes OD, Montgomery AJ, Asselin M, Murray R, Grasby P, McGuire P. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry. 2007;s51:s13–8.

    Google Scholar 

  70. Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD. The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage. 2010;50(2):524–31.

    PubMed  Google Scholar 

  71. Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, et al. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry. 2011;168(12):1311–7.

  72. Kumakura Y, Cumming P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2009;15(6):635–50.

    CAS  Google Scholar 

  73. Bose SK, Turkheimer FE, Howes OD, Mehta MA, Cunliffe R, Stokes PR, et al. Classification of schizophrenic patients and healthy controls using [18F] fluorodopa PET imaging. Schizophr Res. 2008;106(2–3):148–55.

    PubMed  Google Scholar 

  74. Yatham LN, Liddle PF, Shiah IS, Lam RW, Ngan E, Scarrow G, et al. PET study of [(18)F]6-fluoro-l-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry. 2002;159(5):768–74.

    PubMed  Google Scholar 

  75. Martinot M, Bragulat V, Artiges E, Dolle F, Hinnen F, Jouvent R, et al. Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry. 2001;158(2):314–6.

    CAS  PubMed  Google Scholar 

  76. Howes OD, Shotbolt P, Bloomfield M, Daalman K, Demjaha A, Diederen KM, et al. Dopaminergic function in the psychosis spectrum: an [18F]-DOPA imaging study in healthy individuals with auditory hallucinations. Schizophr Bull. 2013;39(4):807–14.

    PubMed Central  PubMed  Google Scholar 

  77. Kim E, Howes OD, Kapur S. Molecular imaging as a guide for the treatment of central nervous system disorders. Dialogues Clin Neurosci. 2013;15(3):315–28.

    PubMed Central  PubMed  Google Scholar 

  78. Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A, et al. Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci Off J Soc Neurosci. 2007;27(30):8080–7.

    CAS  Google Scholar 

  79. Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK, et al. Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain J Neurol. 2013;136(Pt 11):3242–51.

    Google Scholar 

  80. Howes O, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35(3):549–62.

    PubMed Central  PubMed  Google Scholar 

  81. Heinz A. Dopaminergic dysfunction in alcoholism and schizophrenia—psychopathological and behavioral correlates. Eur Psychiatry. 2002;17(1):9–16.

    CAS  PubMed  Google Scholar 

  82. Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975;188:1217–9.

    CAS  PubMed  Google Scholar 

  83. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993;33(4):227–35.

    CAS  PubMed  Google Scholar 

  84. Nyberg S, Farde L, Halldin C, Dahl ML, Bertilsson L. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry. 1995;152(2):173–8.

    CAS  PubMed  Google Scholar 

  85. Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, et al. High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry. 1996;153(7):948–50.

    CAS  PubMed  Google Scholar 

  86. Catafau AM, Corripio I, Perez V, Martin JC, Schotte A, Carrio I, et al. Dopamine D2 receptor occupancy by risperidone: implications for the timing and magnitude of clinical response. Psychiatry Res. 2006;148(2–3):175–83.

    CAS  PubMed  Google Scholar 

  87. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157(4):514–20.

    CAS  PubMed  Google Scholar 

  88. Uchida H, Takeuchi H, Graff-Guerrero A, Suzuki T, Watanabe K, Mamo DC. Dopamine D2 receptor occupancy and clinical effects: a systematic review and pooled analysis. J Clin Psychopharmacol. 2011;31(4):497–502.

    CAS  PubMed  Google Scholar 

  89. Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S. Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry. 2002;7(3):317–21.

    CAS  PubMed  Google Scholar 

  90. Kim E, Howes OD, Turkheimer FE, Kim BH, Jeong JM, Kim JW, et al. The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory : a dual [(11)C]raclopride and [(18) F]FDG imaging study with aripiprazole. Psychopharmacology. 2013;227(2):221–9.

    CAS  PubMed  Google Scholar 

  91. Kim E, Howes OD, Kim BH, Jeong JM, Lee JS, Jang IJ, et al. Predicting brain occupancy from plasma levels using PET: superiority of combining pharmacokinetics with pharmacodynamics while modeling the relationship. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2012;32(4):759–68.

    CAS  Google Scholar 

  92. Kim E, Howes OD, Kim BH, Yu KS, Jeong JM, Lee JS, et al. The use of healthy volunteers instead of patients to inform drug dosing studies: a [(1)(1)C]raclopride PET study. Psychopharmacology. 2011;217(4):515–23.

    CAS  PubMed  Google Scholar 

  93. Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY, et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry. 1989;146(7):905–8.

    CAS  PubMed  Google Scholar 

  94. Uchida H, Mamo DC, Kapur S, Labelle A, Shammi C, Mannaert EJ, et al. Monthly administration of long-acting injectable risperidone and striatal dopamine D2 receptor occupancy for the management of schizophrenia. J Clin Psychiatry. 2008;69(8):1281–6.

    CAS  PubMed  Google Scholar 

  95. Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry. 2000;57(6):553–9.

    CAS  PubMed  Google Scholar 

  96. Samaha AN, Reckless GE, Seeman P, Diwan M, Nobrega JN, Kapur S. Less is more: antipsychotic drug effects are greater with transient rather than continuous delivery. Biol Psychiatry. 2008;64(2):145–52.

    CAS  PubMed  Google Scholar 

  97. Grace AA, Bunney BS, Moore H, Todd CL. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci. 1997;20(1):31–7.

    CAS  PubMed  Google Scholar 

  98. Tamminga CA, Carlsson A. Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis. Curr Drug Targ CNS Neurol Disord. 2002;1(2):141–7.

    CAS  Google Scholar 

  99. Vernaleken I, Kumakura Y, Cumming P, Buchholz HG, Siessmeier T, Stoeter P, et al. Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge. Neuroimage. 2006;30(4):1332–9.

    PubMed  Google Scholar 

  100. Ito H, Takano H, Arakawa R, Takahashi H, Kodaka F, Takahata K, et al. Effects of dopamine D2 receptor partial agonist antipsychotic aripiprazole on dopamine synthesis in human brain measured by PET with l-[beta-11C]DOPA. PloS One. 2012;7(9):e46488.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Ito H, Takano H, Takahashi H, Arakawa R, Miyoshi M, Kodaka F, et al. Effects of the antipsychotic risperidone on dopamine synthesis in human brain measured by positron emission tomography with l-[beta-11C]DOPA: a stabilizing effect for dopaminergic neurotransmission? J Neurosci. 2009;29(43):13730–4.

    CAS  PubMed  Google Scholar 

  102. Grunder G, Vernaleken I, Muller MJ, Davids E, Heydari N, Buchholz HG, et al. Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2003;28(4):787–94.

    Google Scholar 

  103. Bleuler E. Dementia praecox or the group of schizophrenias. New York: International Universities Press; 1950.

    Google Scholar 

  104. Marshall M, Rathbone J. Early intervention for psychosis. Cochrane Database Syst Rev. 2011;6:CD004718.

    PubMed  Google Scholar 

  105. Yung AR, Nelson B. Young people at ultra high risk for psychosis: a research update. Early Interv Psychiatry. 2011;5(Suppl 1):52–7.

    PubMed  Google Scholar 

  106. Fusar-Poli PBS, Bechdolf A, Addington J, Riecher-Rössler A, Schultze-Lutter F, Keshavan M, Wood S, Ruhrmann S, Seidman L, Valmaggia L, Cannon T, Velthorst E, De Haan L, Cornblatt B, Bonoldi I, Birchwood M, McGlashan T, Carpenter W, McGorry P, Klosterkötter J, McGuire P, Yung A. The psychosis high-risk state a comprehensive state-of-the-art review. Arch Gen Psychiatry. 2013;70(1):107–20.

    Google Scholar 

  107. Fusar-Poli P, Deste G, Smieskova R, Barlati G, Yung AR, Howes O, et al. Cognitive functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry. 2012;69(6):562–71.

  108. Yung AR, Fusar-Poli P, Nelson B. The ultra high risk approach to define psychosis risk. Curr Pharm Des. 2012;18(4):346–50.

    CAS  PubMed  Google Scholar 

  109. Howes O, Montgomery A, Asselin M, Valli I, Tabraham P, Johns L, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66(1):13–20.

    PubMed  Google Scholar 

  110. Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P, et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry. 2013;74(2):106–12.

  111. Huttunen J, Heinimaa M, Svirskis T, Nyman M, Kajander J, Forsback S, et al. Striatal dopamine synthesis in first-degree relatives of patients with schizophrenia. Biol Psychiatry. 2008;63(1):114–7.

    CAS  PubMed  Google Scholar 

  112. Shotbolt P, Stokes PR, Owens SF, Toulopoulou T, Picchioni MM, Bose SK, et al. Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol Med. 2011;41(11):2331–8.

    CAS  PubMed  Google Scholar 

  113. Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D, et al. Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry. 2011;16(9):885–6.

  114. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, et al. Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. Arch Gen Psychiatry. 2010;67(7):683–91.

    PubMed  Google Scholar 

  115. Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, et al. Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry. 2011;16(1):67–75.

    CAS  PubMed  Google Scholar 

  116. Allen P, Chaddock CA, Howes OD, Egerton A, Seal ML, Fusar-Poli P, et al. Abnormal relationship between medial temporal lobe and subcortical dopamine function in people with an ultra high risk for psychosis. Schizophr Bull. 2012;38(5):1040–9.

    PubMed Central  PubMed  Google Scholar 

  117. Allen P, Luigjes J, Howes OD, Egerton A, Hirao K, Valli I, et al. Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophr Bull. 2012;38(6):1268–76.

    PubMed Central  PubMed  Google Scholar 

  118. Stone JM, Howes OD, Egerton A, Kambeitz J, Allen P, Lythgoe DJ, et al. Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry. 2010;68(7):599–602.

    CAS  PubMed  Google Scholar 

  119. Bloemen OJ, de Koning MB, Gleich T, Meijer J, de Haan L, Linszen DH, et al. Striatal dopamine D2/3 receptor binding following dopamine depletion in subjects at ultra high risk for psychosis. Eur Neuropsychopharmacol. 2013;23(2):126–32.

    CAS  PubMed  Google Scholar 

  120. Suridjan I, Rusjan P, Addington J, Wilson AA, Houle S, Mizrahi R. Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J Psychiatry Neurosci. 2013;38(2):98–106.

    PubMed Central  PubMed  Google Scholar 

  121. Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, et al. Increased stress-induced dopamine release in psychosis. Biol Psychiatry. 2012;71(6):561–7.

    CAS  PubMed  Google Scholar 

  122. Roiser JP, Howes OD, Chaddock CA, Joyce EM, McGuire P. Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr Bull. 2012;39(6):1328–36.

  123. Lieberman J, Jody D, Geisler S, Alvir J, Loebel A, Szymanski S, et al. Time course and biologic correlates of treatment response in first-episode schizophrenia. Arch Gen Psychiatry. 1993;50(5):369–76.

    CAS  PubMed  Google Scholar 

  124. Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Salanti G, et al. Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. Lancet. 2012;379(9831):2063–71.

    CAS  PubMed  Google Scholar 

  125. Zipursky RB, Menezes NM, Streiner DL. Risk of symptom recurrence with medication discontinuation in first-episode psychosis: a systematic review. Schizophr Res. 2013;152(2–3):408–14.

  126. Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S. D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2009;34(3):662–71.

    CAS  Google Scholar 

  127. Silvestri S, Seeman MV, Negrete JC, Houle S, Shammi CM, Remington GJ, et al. Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology. 2000;152(2):174–80.

    CAS  PubMed  Google Scholar 

  128. Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des. 2009;15(22):2550–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Hollister LE, Krieger GE, Kringel A, Roberts RH. Treatment of chronic schizophrenic reactions with reserpine. Ann N Y Acad Sci. 1955;61(1):92–100.

    CAS  PubMed  Google Scholar 

  130. Lingjaerde O. Tetrabenazine (Nitoman) in the treatment of psychoses. With a discussion on the central mode of action of tetrabenazine and reserpine. Acta Psychiatr Scand. 1963;39(Suppl170):1–09.

    PubMed  Google Scholar 

  131. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010;67(3):231–9.

    CAS  PubMed  Google Scholar 

  132. George TP, Potenza MN, Degen K, Sernyak MJ, Woods S, McDougle CJ. Acute tryptophan depletion in schizophrenic patients treated with clozapine. Arch Gen Psychiatry. 2002;59(3):291–2.

    PubMed  Google Scholar 

  133. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA. 2007;104(24):10164–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.

    CAS  PubMed  Google Scholar 

  135. Savic MM, Majumder S, Huang S, Edwankar RV, Furtmuller R, Joksimovic S, et al. Novel positive allosteric modulators of GABAA receptors: do subtle differences in activity at alpha1 plus alpha5 versus alpha2 plus alpha3 subunits account for dissimilarities in behavioral effects in rats? Progr Neuropsychopharmacol Biol Psychiatry. 2010;34(2):376–86.

    CAS  Google Scholar 

  136. Howes OD, Wheeler MJ, Pilowsky LS, Landau S, Murray RM, Smith S. Sexual function and gonadal hormones in patients taking antipsychotic treatment for schizophrenia or schizoaffective disorder. J Clin Psychiatry. 2007;68(3):361–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Howes OD, Smith S, Aitchison KJ. Comments on “Prolactin levels and erectile function in patients treated with risperidone” (J Clin Psychopharmacol 2004;24:161–166). J Clin Psychopharmacol. 2005;25(4):393–4.

    PubMed  Google Scholar 

  138. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382(9896):951–62.

    CAS  PubMed  Google Scholar 

  139. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353(12):1209–23.

    CAS  PubMed  Google Scholar 

  140. Tandon R, DeQuardo JR, Taylor SF, McGrath M, Jibson M, Eiser A, et al. Phasic and enduring negative symptoms in schizophrenia: biological markers and relationship to outcome. Schizophr Res. 2000;45(3):191–201.

    CAS  PubMed  Google Scholar 

  141. Carpenter WT Jr, Heinrichs DW, Wagman AM. Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry. 1988;145(5):578–83.

    PubMed  Google Scholar 

  142. Tandon R, Greden JF. Negative symptoms of schizophrenia: the need for conceptual clarity. Biol Psychiatry. 1991;30(4):321–5.

    CAS  PubMed  Google Scholar 

  143. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373(9657):31–41.

    CAS  PubMed  Google Scholar 

  144. Meltzer HY. Treatment-resistant schizophrenia—the role of clozapine. Curr Med Res Opin. 1997;14(1):1–20.

    CAS  PubMed  Google Scholar 

  145. Sheitman BB, Lieberman JA. The natural history and pathophysiology of treatment resistant schizophrenia. J Psychiatr Res. 1998;32(3-4):143–50.

    CAS  PubMed  Google Scholar 

  146. Bagdy G, Perenyi A, Arato M, Rotstein E. Decrease of CSF dopamine, its metabolites and noradrenalin after withdrawal of chronic neuroleptic treatment in schizophrenic patients. Psychiatry Res. 1984;12(2):177–8.

    CAS  PubMed  Google Scholar 

  147. Maas JW, Bowden CL, Miller AL, Javors MA, Funderburg LG, Berman N, et al. Schizophrenia, psychosis, and cerebral spinal fluid homovanillic acid concentrations. Schizophr Bull. 1997;23(1):147–54.

    CAS  PubMed  Google Scholar 

  148. Koreen AR, Lieberman J, Alvir J, Mayerhoff D, Loebel A, Chakos M, et al. Plasma homovanillic acid levels in first-episode schizophrenia. Psychopathology and treatment response. Arch Gen Psychiatry. 1994;51(2):132–8.

    CAS  PubMed  Google Scholar 

  149. Davila R, Manero E, Zumarraga M, Andia I, Schweitzer JW, Friedhoff AJ. Plasma homovanillic acid as a predictor of response to neuroleptics. Arch Gen Psychiatry. 1988;45(6):564–7.

    CAS  PubMed  Google Scholar 

  150. Zumarraga M, Gonzalez-Torres MA, Arrue A, Davila R, Davila W, Inchausti L, et al. Variability of plasma homovanillic acid over 13 months in patients with schizophrenia; relationship with the clinical response and the Wisconsin card sort test. Neurochem Res. 2011;36(8):1336–43.

    CAS  PubMed  Google Scholar 

  151. Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry. 2012;169(11):1203–10.

    PubMed  Google Scholar 

  152. Remington G, Kapur S, Foussias G, Agid O, Mann S, Borlido C, et al. Tetrabenazine augmentation in treatment-resistant schizophrenia: a 12-week, double-blind, placebo-controlled trial. J Clin Psychopharmacol. 2012;32(1):95–9.

    CAS  PubMed  Google Scholar 

  153. Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res. 1999;33(6):523–33.

    CAS  PubMed  Google Scholar 

  154. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301–8.

    CAS  PubMed  Google Scholar 

  155. Schwartz TL, Sachdeva S, Stahl SM. Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front Pharmacol. 2012;3:195.

    PubMed Central  PubMed  Google Scholar 

  156. Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, et al. Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry. 1999;156(10):1646–9.

    CAS  PubMed  Google Scholar 

  157. Lodge DJ, Grace AA. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci. 2011;32(9):507–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Egerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK, et al. Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2012;37(11):2515–21.

    CAS  Google Scholar 

  159. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75(5):e11–3.

  160. Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45(9):789–96.

    CAS  PubMed  Google Scholar 

  161. Thompson JL, Urban N, Slifstein M, Xu X, Kegeles LS, Girgis RR, et al. Striatal dopamine release in schizophrenia comorbid with substance dependence. Mol Psychiatry. 2013;18(8):909–15.

    CAS  PubMed  Google Scholar 

  162. Kellendonk C. Modeling excess striatal D2 receptors in mice. Progr Brain Res. 2009;179:59–65.

    CAS  Google Scholar 

  163. Bloomfield MA, Morgan CJ, Egerton A, Kapur S, Curran HV, Howes OD. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry. 2014;75(6):470–8.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

This study was funded by a Medical Research Council (UK) grant to Dr. Howes (grant number: MC-A656-5QD30), the Wellcome Trust, and the National Institute of Health Research Biomedical Research Council grant to King’s College London. Dr. Howes has received investigator-led funding or been on the speaker bureau of AstraZeneca, BMS, Eli Lilly, Jannsen, Leyden-Delta, Roche and Servier. Dr. Bonoldi has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Howes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonoldi, I., Howes, O.D. Presynaptic Dopaminergic Function: Implications for Understanding Treatment Response in Psychosis. CNS Drugs 28, 649–663 (2014). https://doi.org/10.1007/s40263-014-0177-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0177-z

Keywords

Navigation