Skip to main content
Log in

Assessment of the Abuse Liability of a Dual Orexin Receptor Antagonist: A Crossover Study of Almorexant and Zolpidem in Recreational Drug Users

  • Original Research Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Background

Dual orexin receptor antagonists (DORAs) enable initiation and maintenance of sleep in patients with primary insomnia. Blockade of the orexin system has shown reduction of drug-seeking behavior in animal studies, supporting the role of orexin antagonism as a novel approach for treating substance abuse. Since hypnotics are traditionally associated with misuse, a lack of abuse liability of DORAs would offer significant benefits over current therapies for sleep disorders.

Methods

In this randomized, crossover, proof-of-concept study, single oral doses of the DORA almorexant (200, 400, and 1,000 mg) were administered to healthy subjects with previous non-therapeutic experience with central nervous system depressants and were compared with placebo and single oral doses of zolpidem (20 and 40 mg), a benzodiazepine-like drug. Subjective measures of abuse potential (visual analog scales [VAS], Addiction Research Center Inventory, and Subjective Drug Value) and objective measures (divided attention [DA]) were evaluated over 24 h post-dose in 33 evaluable subjects.

Results

Drug Liking VAS peak effect (E max; primary endpoint) was significantly higher for all doses of almorexant and zolpidem compared with placebo (p < 0.001). Almorexant 200 mg showed significantly less ‘Drug Liking’ than both zolpidem doses (p < 0.01), and almorexant 400 mg had smaller effects than zolpidem 20 mg (p < 0.05), while almorexant 1,000 mg was not different from either zolpidem dose. Results were similar for other subjective measures, although almorexant generally showed smaller negative and perceptual effects compared with zolpidem. Almorexant also showed less cognitive impairment compared with zolpidem on most DA endpoints.

Conclusion

This study in humans investigating single doses of almorexant is the first to explore and show abuse liability of a DORA, a class of compounds that is not only promising for the treatment of sleep disorders, but also of addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wilson SJ, Nutt DJ, Alford C, et al. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. J Psychopharmacol. 2010;24(11):1577–601.

    Article  PubMed  CAS  Google Scholar 

  2. Licata SC, Rowlett JK. Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond. Pharmacol Biochem Behav. 2008;90(1):74–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Griffiths RR, Johnson MW. Relative abuse liability of hypnotic drugs: a conceptual framework and algorithm for differentiating among compounds. J Clin Psychiatry. 2005;66(Suppl 9):31–41.

    PubMed  CAS  Google Scholar 

  4. Brisbare-Roch C, Dingemanse J, Koberstein R, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.

    Article  PubMed  CAS  Google Scholar 

  5. Hoever P, Dorffner G, Benes H, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Hoever P, de Haas SL, Dorffner G, et al. Orexin receptor antagonism: an ascending multiple-dose study with almorexant. J Psychopharmacol. 2012;26(8):1071–80.

    Article  PubMed  Google Scholar 

  7. Steiner MA, Lecourt H, Strasser DS, et al. Differential effects of the dual orexin receptor antagonist almorexant and the GABA(A)-alpha1 receptor modulator zolpidem, alone or combined with ethanol, on motor performance in the rat. Neuropsychopharmacology. 2011;36(4):848–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Hoch M, Hay JL, Hoever P, et al. Dual orexin receptor antagonism by almorexant does not potentiate impairing effects of alcohol in humans. Eur Neuropsychopharmacol. 2013;23(2):107–17.

    Article  PubMed  CAS  Google Scholar 

  9. Steiner MA, Lecourt H, Jenck F. The dual orexin receptor antagonist almorexant, alone and in combination with morphine, cocaine and amphetamine, on conditioned place preference and locomotor sensitization in the rat. Int J Neuropsychopharmacol. 2013;16(2):417–32.

    Article  PubMed  CAS  Google Scholar 

  10. Brisbare-Roch C, Fischer W, Jenck F. Effect of once-daily almorexant treatment for 6 weeks on the sleep–wake cycle of normal Wistar rats. Eur Neuropsychopharmacol. 2010;20(Suppl 3):S253–4.

    Article  Google Scholar 

  11. Actelion Pharmaceuticals Ltd. Almorexant (ACT-078573) in adult subjects with chronic primary insomnia (RESTORA1) [ClinicalTrials.gov identifier NCT00608985]. US National Institutes of Health, ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT00608985?term=restora&rank=1.

  12. Mahler SV, Smith RJ, Moorman DE, et al. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res. 2012;198:79–121.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci. 2012;6:78.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Srinivasan S, Simms JA, Nielsen CK, et al. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One. 2012;7(9):e44726.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. LeSage MG, Perry JL, Kotz CM, et al. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology (Berl). 2010;209(2):203–12.

    Article  CAS  Google Scholar 

  16. O’Connor EC, Chapman K, Butler P, et al. The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev. 2011;35(3):912–38.

    Article  PubMed  CAS  Google Scholar 

  17. Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl). 2000;153(1):31–43.

    Article  CAS  Google Scholar 

  18. Riegel AC, Kalivas PW. Neuroscience: lack of inhibition leads to abuse. Nature. 2010;463(7282):743–4.

    Article  PubMed  CAS  Google Scholar 

  19. Tan KR, Brown M, Labouebe G, et al. Neural bases for addictive properties of benzodiazepines. Nature. 2010;463(7282):769–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Schoedel KA, Sellers EM. Assessing abuse liability during drug development: changing standards and expectations. Clin Pharmacol Ther. 2008;83(4):622–6.

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths RR, Bigelow GE, Ator NA. Principles of initial experimental drug abuse liability assessment in humans. Drug Alcohol Depend. 2003;70(3 Suppl):S41–54.

    Article  PubMed  Google Scholar 

  22. Chen L, Tsong Y. Design and analysis for drug abuse potential studies: issues and strategies for implementing a crossover design. Drug Inf J. 2007;41(4):481–9.

    Google Scholar 

  23. Center for Drug Evaluation and Research, Food and Drug Administration. Assessment of abuse potential of drugs (draft guidance). Guidance for industry. Jan 2010.

  24. Parasrampuria DA, Schoedel KA, Schuller R, et al. Do formulation differences alter abuse liability of methylphenidate? A placebo-controlled, randomized, double-blind, crossover study in recreational drug users. J Clin Psychopharmacol. 2007;27(5):459–67.

    Article  PubMed  CAS  Google Scholar 

  25. Bowdle TA, Radant AD, Cowley DS, et al. Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations. Anesthesiology. 1998;88(1):82–8.

    Article  PubMed  CAS  Google Scholar 

  26. Martin WR, Sloan JW, Sapira JD, et al. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther. 1971;12(2):245–58.

    PubMed  CAS  Google Scholar 

  27. Milovan D, Almeida L, Romach MK, et al. Effect of eslicarbazepine acetate and oxcarbazepine on cognition and psychomotor function in healthy volunteers. Epilepsy Behav. 2010;18(4):366–73.

    Article  PubMed  Google Scholar 

  28. Romach MK, Schoedel KA, Rosen LB, et al. Adverse effects of gaboxadol and zolpidem at high doses in recreational drug users [poster]. 47th Annual Meeting American College of Neuropsychopharmacology, 7–11 Dec 2008, Scottsdale (AZ).

  29. Schoedel KA. Measures of abuse potential in human abuse liability trials: application to anti-epileptics [workshop]. College on Problems of Drug Dependence, 22 June 2009, Reno-Sparks (NV).

  30. Schoedel KA, Rosen LB, Alexander R, et al. A Single-dose, randomized, double-blind, crossover abuse liability study to evaluate the subjective and objective effects of gaboxadol and zolpidem in recreational drug users [poster]. American Society for Clinical Pharmacology and Therapeutics, 18–21 March 2009, National Harbor (MD).

  31. Rush CR, Baker RW, Wright K. Acute behavioral effects and abuse potential of trazodone, zolpidem and triazolam in humans. Psychopharmacology (Berl). 1999;144(3):220–33.

    Article  CAS  Google Scholar 

  32. Shram MJ, Schoedel KA, Bartlett C, et al. Evaluation of the abuse potential of lorcaserin, a serotonin 2C (5-HT2C) receptor agonist, in recreational polydrug users. Clin Pharmacol Ther. 2011;89(5):683–92.

    Article  PubMed  CAS  Google Scholar 

  33. de Haas S, Dingemanse J, Hoever P, et al. Pseudohallucinations after zolpidem intake: a case report. J Clin Psychopharmacol. 2007;27(6):728–30.

    Article  PubMed  Google Scholar 

  34. Johanson CE, Balster RL, Henningfield JE, et al. Risk management and post-marketing surveillance for the abuse of medications acting on the central nervous system: expert panel report. Drug Alcohol Depend. 2009;105(Suppl 1):S65–71.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Carter LP, Griffiths RR. Principles of laboratory assessment of drug abuse liability and implications for clinical development. Drug Alcohol Depend. 2009;105(Suppl 1):S14–25.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson MW, Suess PE, Griffiths RR. Ramelteon: a novel hypnotic lacking abuse liability and sedative adverse effects. Arch Gen Psychiatry. 2006;63(10):1149–57.

    Article  PubMed  CAS  Google Scholar 

  37. Martinotti G, Lupi M, Sarchione F, et al. The potential of pregabalin in neurology, psychiatry and addiction: a qualitative overview. Curr Pharm Des. 2013;19(35):6367–74.

    Google Scholar 

  38. Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 2006;29(10):571–7.

    Article  PubMed  CAS  Google Scholar 

  39. Aston-Jones G, Smith RJ, Sartor GC, et al. Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res. 2010;1314:74–90.

    Article  PubMed  CAS  Google Scholar 

  40. Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61(2):162–76.

    Article  PubMed  CAS  Google Scholar 

  41. Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2011;51:243–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Smith RJ, See RE, Aston-Jones G. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J Neurosci. 2009;30(3):493–503.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Smith RJ, Aston-Jones G. Orexin/hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci. 2012;35(5):798–804.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Jupp B, Krstew E, Dezsi G, et al. Discrete cue-conditioned alcohol-seeking after protracted abstinence: pattern of neural activation and involvement of orexin(1) receptors. Br J Pharmacol. 2011;162(4):880–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Hollander JA, Pham D, Fowler CD, et al. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci. 2012;6:47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Espana RA, Oleson EB, Locke JL, et al. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci. 2010;31(2):336–48.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Borgland SL, Chang SJ, Bowers MS, et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci. 2009;29(36):11215–25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Willie JT, Chemelli RM, Sinton CM, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 2003;38(5):715–30.

    Article  PubMed  CAS  Google Scholar 

  49. Dugovic C, Shelton JE, Aluisio LE, et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther. 2009;330(1):142–51.

    Article  PubMed  CAS  Google Scholar 

  50. Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76(3):470–85.

    Article  PubMed  CAS  Google Scholar 

  51. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. doi:10.1038/npp.2009.110.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Lena I, Parrot S, Deschaux O, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81(6):891–9.

    Article  PubMed  CAS  Google Scholar 

  53. Hoever P, de Haas S, Winkler J, et al. Orexin receptor antagonism, a new sleep-promoting paradigm: an ascending single-dose study with almorexant. Clin Pharmacol Ther. 2010;87(5):593–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the subjects and investigators who took part in this study. The authors received administrative support from Jorge Campos (Actelion Pharmaceuticals Ltd) for preparing the manuscript.

Funding

This study was sponsored by Actelion Pharmaceuticals Ltd, Switzerland, which provided payments to investigators or their institutions to perform the study.

Conflicts of Interest

Hans Cruz, Petra Hoever, and Jasper Dingemanse are full-time employees of, and own stock options in Actelion Pharmaceuticals Ltd. Edward M. Sellers, the principal investigator of the study, Bijan Chakraborty, the study statistician, and Kerri Schoedel, the scientific advisor, were full-time employees of INC Research Toronto Inc. (previously Kendle Early Stage, Toronto, ON, Canada) at the time of the study. Payments were received from their institutions and from Actelion Pharmaceuticals Ltd for performing the study and for data analysis.

Author Contributions

Hans Cruz wrote the manuscript, designed research, and analyzed data. Petra Hoever wrote the manuscript, designed research, and analyzed data. Jasper Dingemanse wrote the manuscript, designed research, and analyzed data. Edward M. Sellers wrote the manuscript, designed and performed research, analyzed data, and contributed new reagents/analytical tools. Bijan Chakraborty wrote the manuscript, designed research, and analyzed data. Kerri Schoedel wrote the manuscript, designed research, and analyzed data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Dingemanse.

Additional information

ClinicalTrials.gov registration number: NCT01987739.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, H.G., Hoever, P., Chakraborty, B. et al. Assessment of the Abuse Liability of a Dual Orexin Receptor Antagonist: A Crossover Study of Almorexant and Zolpidem in Recreational Drug Users. CNS Drugs 28, 361–372 (2014). https://doi.org/10.1007/s40263-014-0150-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0150-x

Keywords

Navigation