Skip to main content
Log in

The Evidence for a Beneficial Role of Vitamin A in Multiple Sclerosis

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Vitamin A is an essential nutrient with important roles in immunological responses and in brain development. Its main metabolite is retinoic acid (RA), which is responsible for the neuroimmunological functions related to vitamin A. In the brain, RA is known to have interactions with other nuclear receptor-mediated signalling pathways. RA is involved in plasticity, regeneration, cognition and behaviour. In the peripheral blood, RA plays a major role both in increasing tolerance and in decreasing inflammation, through balancing T-lymphocyte populations. It is likely that RA synthesis may be manipulated by complex cross-talk among cells during infection and inflammation. The role of vitamin A in multiple sclerosis (MS) could be dual: at the same time as it decreases inflammation and increases tolerance of autoimmunity, it may also help in brain protection. The present review discusses the beneficial effects that vitamin A might have for controlling MS, although it must be clearly stated that, at the present time, there is no clear indication for using vitamin A as a treatment for MS. However, the results from the present review should encourage clinical trials with vitamin supplementation as a potential treatment or as an add-on option. Vitamin A acts in synergy with vitamin D, and the immunological homeostasis ensured by these vitamins should not be unbalanced in favour of only one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Farso MC, Krantic S, Rubio M, Safati M, Quirion R. The retinoid, 6-[3-ada-mantyl-4-hydroxyphenyl]-2-napthalene carboxylic acid, controls proliferative, morphological, and inflammatory responses involved in microglial activation without cytotoxic effects. Neuroscience. 2011;192:172–84.

    Article  PubMed  CAS  Google Scholar 

  3. Kim CH. Retinoic acid, immunity, and inflammation. Vitam Horm. 2011;86:83–101.

    Article  PubMed  CAS  Google Scholar 

  4. Ross AC. Vitamin A and retinoic acid in T cell-related immunity. Am J Clin Nutr. 2012;96:1166S–72S.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. May J, McCaffery PJ. Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist. 2004;10:409–21.

    Article  CAS  Google Scholar 

  6. Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci. 2012;35:733–41.

    Article  PubMed  CAS  Google Scholar 

  7. Filippi M, Preziosa P, Rocca MA. Vitamin A: yet another player in multiple sclerosis pathogenesis? Expert Rev Clin Immunol. 2013;9:113–5.

    Article  PubMed  CAS  Google Scholar 

  8. O’Byrne SM, Blaner WS. Retinol and retinyl esters: biochemistry and physiology. J Lipid Res. 2013;54:1731–43.

    Article  PubMed  CAS  Google Scholar 

  9. Vieira AV, Schneider WJ, Vieira PM. Retinoids: transport, metabolism, and mechanisms of action. J Endocrinol. 1995;146:201–7.

    Article  PubMed  CAS  Google Scholar 

  10. Nagpal S, Chandraratna RA. Recent developments in receptor-selective retinoids. Curr Pharm Des. 2000;6:919–31.

    Article  PubMed  CAS  Google Scholar 

  11. Wolf G. Is 9-cis-retinoic acid the endogenous ligand for the retinoic acid-X receptor? Nutr Rev. 2006;64:532–8.

    Article  PubMed  Google Scholar 

  12. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.

    Article  PubMed  CAS  Google Scholar 

  13. Hua S, Kittler R, White KP. Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell. 2009;137:1259–71.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Adan RA, Cox JJ, Beischlag TV, Burbach JP. A composite hormone response element mediates the transactivation of the rat oxytocin gene by different classes of nuclear hormone receptors. Mol Endocrinol. 1993;7:47–57.

    PubMed  CAS  Google Scholar 

  15. Ransom J, Morgan PJ, McCaffery PJ. Stoney PN. The rhythm of retinoids in the brain. J Neurochem. 2013 (in press).

  16. Comabella M, Khoury SJ. Immunopathogenesis of multiple sclerosis. Clin Immunol. 2012;142:2–8.

    Article  PubMed  CAS  Google Scholar 

  17. Nakayamada S, Takahashi H, Kanno Y, O’Shea JJ. Helper T cell diversity and plasticity. Curr Opin Immunol. 2012;24:297–302.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Nowak EC, Noelle RJ. Interleukin-9 as a T helper type 17 cytokine. Immunology. 2010;131:169–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Hall JA, Grainger JR, Spencer SP, Belkaid Y. The role of retinoic acid in tolerance and immunity. Immunity. 2011;35:13–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Sidell N, Schlichter L. Retinoic acid blocks potassium channels in human lymphocytes. Biochem Biophys Res Commun. 1986;138:560–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bosma M, Sidell N. Retinoic acid inhibits Ca2+ currents and cell proliferation in a B-lymphocyte cell line. J Cell Physiol. 1988;135:317–23.

    Article  PubMed  CAS  Google Scholar 

  22. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

  23. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448:484–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  PubMed  CAS  Google Scholar 

  25. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.

    Article  PubMed  CAS  Google Scholar 

  26. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–4.

    Article  PubMed  CAS  Google Scholar 

  27. Di Caro V, Phillips B, Engman C, Harnaha J, Trucco M, Giannoukakis N. Retinoic acid-producing, ex vivo-generated human tolerogenic dendritic cells induce the proliferation of immunosuppressive B-lymphocytes. Clin Exp Immunol. 2013;174:302–17.

    PubMed  Google Scholar 

  28. Ziegler SF, Buckner JH. FOXP3 and the regulation of Treg/Th17 differentiation. Microbes Infect. 2009;11:594–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Zúñiga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.

    Article  PubMed  CAS  Google Scholar 

  30. Wan YY, Flavell RA. Yin-Yang functions of TGF-β and Tregs in immune regulation. Immunol Rev. 2007;220:199–213.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med. 2007;204:1765–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Mauri C, Blair PA. Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol. 2010;6:636–43.

    Article  PubMed  CAS  Google Scholar 

  33. DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann NY Acad Sci. 2010;1183:38–57.

    Article  PubMed  CAS  Google Scholar 

  34. Klebanoff CA, Spencer SP, Torabi-Parizi P, Grainger JR, Roychoudhuri R, Ji Y, et al. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med. 2013;210:1961–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Zhu B, Buttrick T, Bassil R, Zhu C, Olah M, Wu C, et al. IL-4 and retinoic acid synergistically induce regulatory dendritic cells expressing Aldh1a2. J Immunol. 2013;161:139–51.

    Google Scholar 

  36. Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci. 2002;3:843–53.

    Article  PubMed  CAS  Google Scholar 

  37. Fragoso YD, Shearer KD, Sementilli A, de Carvalho LV, McCaffery PJ. High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct. 2012;217:473–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Soden ME, Chen L. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J Neurosci. 2010;30:16910–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Carmona-Mora P, Walz K. Retinoic Acid Induced 1, RAI1: A dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Curr Genomics. 2010;11:607–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Wan C, Yang Y, Li H, La Y, Zhu H, Jiang L, Chen Y, Feng G, He L. Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients. J Proteome Res. 2006;5:3213–6.

    Article  PubMed  CAS  Google Scholar 

  41. Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, et al. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci USA. 2006;103:3902–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, et al. Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus. 2012;22:2171–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Shearer KD, Goodman TH, Ross AW, Reilly L, Morgan PJ, McCaffery PJ. Photoperiodic regulation of retinoic acid signaling in the hypothalamus. J Neurochem. 2010;112:246–57.

    Article  PubMed  CAS  Google Scholar 

  44. Chiang MY, Misner D, Kempermann G, Schikorski T, Giguère V, Sucov HM, et al. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron. 1998;21:1353–61.

    Article  PubMed  CAS  Google Scholar 

  45. Nomoto M, Takeda Y, Uchida S, Mitsuda K, Enomoto H, Saito K, et al. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol Brain. 2012;5:8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res. 2003;145:37–49.

    Article  PubMed  CAS  Google Scholar 

  47. Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B, Wietrzych M, et al. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci. 2008;28:279–91.

    Article  PubMed  CAS  Google Scholar 

  48. Chen N, Napoli JL. All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J. 2008;22:236–45.

    Article  PubMed  CAS  Google Scholar 

  49. Chen N, Onisko B, Napoli JL. The nuclear transcription factor RARalpha associates with neuronal RNA granules and suppresses translation. J Biol Chem. 2008;283:20841–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Anzano MA, Lamb AJ, Olson JA. Growth, appetite, sequence of pathological signs and survival following the induction of rapid, synchronous vitamin A deficiency in the rat. J Nutr. 1979;109:1419–31.

    PubMed  CAS  Google Scholar 

  51. Bitarafan S, Harirchian MH, Sahraian MA, Keramatipour M, Beladi Moghadam N, Togha M, et al. Impact of vitamin A supplementation on RAR gene expression in multiple sclerosis patients. J Mol Neurosci. 2013;51:478–84.

    Article  PubMed  CAS  Google Scholar 

  52. Mohammadzadeh Honarvar N, Harirchian MH, Koohdani F, Siassi F, Abdolahi M, Bitarafan S, et al. The effect of vitamin A supplementation on retinoic acid-related orphan receptor γt (RORγt) and interleukin-17 (IL-17) gene expression in Avonex-treated multiple sclerotic patients. J Mol Neurosci. 2013;51:749–53.

    Article  PubMed  CAS  Google Scholar 

  53. Bright JJ, Walline CC, Kanakasabai S, Chakraborty S. Targeting PPAR as a therapy to treat multiple sclerosis. Expert Opin Ther Targets. 2008;12(12):1565–75.

    Article  PubMed  CAS  Google Scholar 

  54. Xu J, Chavis JA, Racke MK, Drew PD. Peroxisome proliferator-activated receptor-alpha and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. J Neuroimmunol. 2006;176:95–105.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang-Gandhi JCX, Drew PD. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol. 2007;183:50–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci. 2011;14:45–53.

    Article  PubMed  CAS  Google Scholar 

  57. Huang JK, Franklin RJ. Regenerative medicine in multiple sclerosis: identifying pharmacological targets of adult neural stem cell differentiation. Neurochem Int. 2011;59(3):329–332.x.

    PubMed  CAS  Google Scholar 

  58. Massacesi L, Abbamondi AL, Giorgi C, Sarlo F, Lolli F, Amaducci L. Suppression of experimental allergic encephalomyelitis by retinoic acid. J Neurol Sci. 1987;80:55–64.

    Article  PubMed  CAS  Google Scholar 

  59. Massacesi L, Abbamondi AL, Sarlo F, Amaducci L. The control of experimental allergic encephalomyelitis with retinoic acid. Further studies. Riv Neurol. 1987;57:166–9.

    PubMed  CAS  Google Scholar 

  60. Massacesi L, Castigli E, Vergelli M, Olivotto J, Abbamondi AL, Sarlo F, et al. Immunosuppressive activity of 13-cis-retinoic acid and prevention of experimental autoimmune encephalomyelitis in rats. J Clin Invest. 1991;88:1331–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Racke MK, Burnett D, Pak SH, Albert PS, Cannella B, Raine CS, et al. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol. 1995;154:450–8.

    PubMed  CAS  Google Scholar 

  62. Vergelli M, Olivotto J, Castigli E, Gran B, Raimondi L, Pirisino R, et al. Immunosuppressive activity of 13-cis-retinoic acid in rats: aspects of pharmacokinetics and pharmacodynamics. Immunopharmacology. 1997;37:191–7.

    Article  PubMed  CAS  Google Scholar 

  63. Xu J, Drew PD. 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. J Neuroimmunol. 2006;171:135–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Xu J, Storer PD, Chavis JA, Racke MK, Drew PD. Agonists for the peroxisome proliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res. 2005;81:403–11.

    Article  PubMed  CAS  Google Scholar 

  65. Petkovich PM, Heersche JN, Tinker DO, Jones G. Retinoic acid stimulates 1,25-dihydroxyvitamin D3 binding in rat osteosarcoma cells. J Biol Chem. 1984;259:8274–80.

    PubMed  CAS  Google Scholar 

  66. Yamanaka K, Dimitroff CJ, Fuhlbrigge RC, Kakeda M, Kurokawa I, Mizutani H, Kupper TS. Vitamins A and D are potent inhibitors of cutaneous lymphocyte-associated antigen expression. J Allergy Clin Immunol. 2008;121:148–57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Székely JI, Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: a short review. Expert Rev Respir Med. 2012;6:683–704.

    Article  PubMed  CAS  Google Scholar 

  68. Ikeda U, Wakita D, Ohkuri T, Chamoto K, Kitamura H, Iwakura Y, Nishimura T. 1α,25-Dihydroxyvitamin D3 and all-trans retinoic acid synergistically inhibit the differentiation and expansion of Th17 cells. Immunol Lett. 2010;134:7–16.

    Article  PubMed  CAS  Google Scholar 

  69. Ross AC, Chen Q, Ma Y. Vitamin A and retinoic acid in the regulation of B-cell development and antibody production. Vitam Horm. 2011;86:103–26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Warren TR. The increased prevalence of multiple sclerosis among people who were born and bred in areas where goitre is endemic. Med Hypotheses. 1984;14:111–4.

    Article  PubMed  CAS  Google Scholar 

  71. Campbell AMG, Crow RS, Lang DW. Goitre and disseminated sclerosis. Br Med J. 1960;1:200–1.

    Article  PubMed Central  Google Scholar 

  72. Torkildsen Ø, Løken-Amsrud KI, Wergeland S, Myhr KM, Holmøy T. Fat-soluble vitamins as disease modulators in multiple sclerosis. Acta Neurol Scand Suppl. 2013;196:16–23.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang QY, Huang JH, Li HZ, Guo HT, Zhong YQ, Wang YM, Pei JM. Myelin-basic protein-reactive specific CD4+ and CD8+ NK lymphocytes induce morphological changes in neuronal cell bodies and myelin sheaths: implications for multiple sclerosis. Arch Med Res. 2008;39:45–51.

    Article  PubMed  CAS  Google Scholar 

  74. Lovett-Racke AE, Racke MK. Retinoic acid promotes the development of Th2-like human myelin basic protein-reactive T cells. Cell Immunol. 2002;215:54–60.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang SM, Hernán MA, Olek MJ, Spiegelman D, Willett WC, Ascherio A. Intakes of carotenoids, vitamin C, and vitamin E and MS risk among two large cohorts of women. Neurology. 2001;57:75–80.

    Article  PubMed  CAS  Google Scholar 

  76. Kalz F, Schafer A. Vitamin A serum levels after ingestion of different vitamin A preparations. Can Med Assoc J. 1958;79:918–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Besler HT, Comoğlu S, Okçu Z. Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr Neurosci. 2002;5:215–20.

    Article  PubMed  CAS  Google Scholar 

  78. Royal W 3rd, Gartner S, Gajewski CD. Retinol measurements and retinoid receptor gene expression in patients with multiple sclerosis. Mult Scler. 2002;8:452–8.

    Article  PubMed  CAS  Google Scholar 

  79. Løken-Amsrud KI, Myhr KM, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, et al. Retinol levels are associated with magnetic resonance imaging outcomes in multiple sclerosis. Mult Scler. 2013;19:451–7.

    Article  PubMed  Google Scholar 

  80. Løken-Amsrud KI, Myhr KM, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, et al. Alpha-tocopherol and MRI outcomes in multiple sclerosis—association and prediction. PLoS ONE. 2013;8:e54417.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Runia TF, Hop WCJ, de Rijke YB, Hintzen RQ. Vitamin A is not associated with exacerbations in multiple sclerosis. Mult Scler Relat Disord. 2014;3:34–9.

    Article  Google Scholar 

  82. Qu ZX, Pliskin N, Jensen MW, White D, Arnason BG. Etretinate augments interferon beta-1b effects on suppressor cells in multiple sclerosis. Arch Neurol. 2001;58:87–90.

    Article  PubMed  CAS  Google Scholar 

  83. McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair. J Neurochem. 2007;100:295–306.

    Article  PubMed  CAS  Google Scholar 

  84. Jafarirad S, Siassi F, Harirchian MH, Amani R, Bitarafan S, Saboor-Yaraghi A. The effect of vitamin A supplementation on biochemical parameters in multiple sclerosis patients. Iran Red Crescent Med J. 2013;15:194–8.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Jafarirad S, Siassi F, Harirchian MH, Sahraian MA, Eshraghian MR, Shokri F, et al. The effect of vitamin A supplementation on stimulated T-cell proliferation with myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. J Neurosci Rural Pract. 2012;3:294–8.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Sundgren M, Maurex L, Wahlin Å, Piehl F, Brismar T. Cognitive impairment has a strong relation to nonsomatic symptoms of depression in relapsing-remitting multiple sclerosis. Arch Clin Neuropsychol. 2013;28:144–55.

    Article  PubMed  Google Scholar 

  87. Luo T, Wagner E, Dräger UC. Integrating retinoic acid signaling with brain function. Dev Psychol. 2009;45:139–50.

    Article  PubMed  Google Scholar 

  88. Ormerod AD, Thind CK, Rice SA, Reid IC, Williams JH, McCaffery PJ. Influence of isotretinoin on hippocampal-based learning in human subjects. Psychopharmacology (Berl). 2012;221:667–74.

    Article  CAS  Google Scholar 

  89. Jimenez-Jimenez FJ, Molina JA, de Bustos F, Ortí-Pareja M, Benito-León J, Tallón-Barranco A, Gasalla T, Porta J, Arenas J. Serum levels of β-carotene, α-carotene and vitamin A in patients with Alzheimer’s disease. Eur J Neurol. 1999;6:495–7.

    Article  PubMed  CAS  Google Scholar 

  90. Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int. 2011;59:535–41.

    Article  PubMed  CAS  Google Scholar 

  91. Feinstein A. Multiple sclerosis and depression. Mult Scler. 2011;17:1276–81.

    Article  PubMed  Google Scholar 

  92. Klevan G, Jacobsen CO, Aarseth JH, Myhr KM, Nyland H, Glad S, Lode K, Figved N, Larsen JP, Farbu E. Health related quality of life in patients recently diagnosed with multiple sclerosis. Acta Neurol Scand. 2014;129(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  93. Hashmi AM, Butt Z, Umair M. Is depression an inflammatory condition? A review of available evidence. J Pak Med Assoc. 2013;63:899–906.

    PubMed  Google Scholar 

  94. Madeeh Hashmi A, Awais Aftab M, Mazhar N, Umair M, Butt Z. The fiery landscape of depression: a review of the inflammatory hypothesis. Pak J Med Sci. 2013;29(3):877–84.

    PubMed Central  PubMed  Google Scholar 

  95. Correale J, Farez MF. The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol. 2011;233:6–11.

    Article  PubMed  CAS  Google Scholar 

  96. Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007;61:97–108.

    Article  PubMed  CAS  Google Scholar 

  97. Correale J, Farez MF. Parasite infections in multiple sclerosis modulate immune responses through a retinoic acid-dependent pathway. J Immunol. 2013;191(7):3827–37.

    Article  PubMed  CAS  Google Scholar 

  98. Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE. Helminth parasites: masters of regulation. Immunol Rev. 2004;201:89–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

YD Fragoso is the recipient of a post-doctoral Science without Borders grant from the National Counsel of Technological and Scientific Development (CNPq), Brazil (Number 237450/2012-7). Thanks are due to the Biological Sciences Research Council for grants BB/G014272/1 and BB/K001043/1, which have partially supported this work.

All authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara Dadalti Fragoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fragoso, Y.D., Stoney, P.N. & McCaffery, P.J. The Evidence for a Beneficial Role of Vitamin A in Multiple Sclerosis. CNS Drugs 28, 291–299 (2014). https://doi.org/10.1007/s40263-014-0148-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0148-4

Keywords

Navigation