Skip to main content
Log in

Causes of CNS Inflammation and Potential Targets for Anticonvulsants

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood–brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3(7):569–81.

    Article  CAS  PubMed  Google Scholar 

  2. Das A, Wallace GC 4th, Holmes C, et al. Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 2012;220:237–46.

    Article  CAS  PubMed  Google Scholar 

  3. Sheng JG, Boop FA, Mrak RE, et al. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity. J Neurochem. 1994;63(5):1872–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bien CG, Urbach H, Schramm J, et al. Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology. 2007;69(12):1236–44.

    Article  CAS  PubMed  Google Scholar 

  5. Crespel A, Coubes P, Rousset MC, et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 2002;952(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  6. Maldonado M, Baybis M, Newman D, et al. Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis. 2003;14(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  7. Aronica E, Crino PB. Inflammation in epilepsy: clinical observations. Epilepsia. 2011;52(Suppl. 3):26–32.

    Article  PubMed  Google Scholar 

  8. Bansal SK, Sawhney IM, Chopra JS. Epilepsia partialis continua in Sjogren’s syndrome. Epilepsia. 1987;28(4):362–3.

    Article  CAS  PubMed  Google Scholar 

  9. Cimaz R, Meroni PL, Shoenfeld Y. Epilepsy as part of systemic lupus erythematosus and systemic antiphospholipid syndrome (Hughes syndrome). Lupus. 2006;15(4):191–7.

    Article  CAS  PubMed  Google Scholar 

  10. Russell PW, Haserick JR, Zucker EM. Epilepsy in systemic lupus erythematosus; effect of cortisone and ACTH. AMA Arch Intern Med. 1951;88(1):78–92.

    Article  CAS  PubMed  Google Scholar 

  11. Bovolenta R, Zucchini S, Paradiso B, et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflamm. 2010;7:81.

    Article  CAS  Google Scholar 

  12. Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  13. Musto AE, Samii M. Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy. Epilepsia. 2011;52(3):551–61.

    Article  CAS  PubMed  Google Scholar 

  14. Marusich E, Louboutin JP, Chekmasova AA, et al. Lymphocyte adhesion to CCR5 ligands is reduced by anti-CCR5 gene delivery. J Neurol Sci. 2011;308(1–2):25–7.

    Article  CAS  PubMed  Google Scholar 

  15. Auvin S, Mazarati A, Shin D, et al. Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis. 2010;40(1):303–10.

    Article  CAS  PubMed  Google Scholar 

  16. Zattoni M, Mura ML, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci. 2011;31(11):4037–50.

    Article  CAS  PubMed  Google Scholar 

  17. Ravizza T, Balosso S, Vezzani A. Inflammation and prevention of epileptogenesis. Neurosci Lett. 2011;497(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  18. Pardo CA, Vining EP, Guo L, et al. The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia. 2004;45(5):516–26.

    Article  PubMed  Google Scholar 

  19. Yang R, Puranam RS, Butler LS, et al. Autoimmunity to munc-18 in Rasmussen’s encephalitis. Neuron. 2000;28(2):375–83.

    Article  CAS  PubMed  Google Scholar 

  20. Bien CG, Bauer J, Deckwerth TL, et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol. 2002;51(3):311–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers SW, Andrews PI, Gahring LC, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265(5172):648–51.

    Article  CAS  PubMed  Google Scholar 

  22. Wiendl H, Bien CG, Bernasconi P, et al. GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology. 2001;57(8):1511–4.

    Article  CAS  PubMed  Google Scholar 

  23. Bauer J, Bien CG, Lassmann H. Rasmussen’s encephalitis: a role for autoimmune cytotoxic T lymphocytes. Curr Opin Neurol. 2002;15(2):197–200.

    Article  PubMed  Google Scholar 

  24. Liu ZS, Wang QW, Wang FL, et al. Serum cytokine levels are altered in patients with West syndrome. Brain Dev. 2001;23(7):548–51.

    Article  CAS  PubMed  Google Scholar 

  25. Hattori H. Spontaneous remission of spasms in West syndrome: implications of viral infection. Brain Dev. 2001;23(7):705–7.

    Article  CAS  PubMed  Google Scholar 

  26. Ravizza T, Boer K, Redeker S, et al. The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis. 2006;24(1):128–43.

    Article  CAS  PubMed  Google Scholar 

  27. Peltola J, Palmio J, Korhonen L, et al. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic–clonic seizures. Epilepsy Res. 2000;41(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  28. Peltola J, Laaksonen J, Haapala AM, et al. Indicators of inflammation after recent tonic–clonic epileptic seizures correlate with plasma interleukin-6 levels. Seizure. 2002;11(1):44–6.

    Article  CAS  PubMed  Google Scholar 

  29. Hulkkonen J, Koskikallio E, Rainesalo S, et al. The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients. Epilepsy Res. 2004;59(2–3):199–205.

    Article  CAS  PubMed  Google Scholar 

  30. Lehtimaki KA, Liimatainen S, Peltola J, et al. The serum level of interleukin-6 in patients with intellectual disability and refractory epilepsy. Epilepsy Res. 2011;95(1–2):184–7.

    Article  PubMed  CAS  Google Scholar 

  31. Haspolat S, Mihci E, Coskun M, et al. Interleukin-1beta, tumor necrosis factor-alpha, and nitrite levels in febrile seizures. J Child Neurol. 2002;17(10):749–51.

    Article  PubMed  Google Scholar 

  32. Tutuncuoglu S, Kutukculer N, Kepe L, et al. Proinflammatory cytokines, prostaglandins and zinc in febrile convulsions. Pediatr Int. 2001;43(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  33. Virta M, Hurme M, Helminen M. Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia. 2002;43(8):920–3.

    Article  CAS  PubMed  Google Scholar 

  34. Ichiyama T, Nishikawa M, Yoshitomi T, et al. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures: comparison with acute encephalitis/encephalopathy. Neurology. 1998;50(2):407–11.

    Article  CAS  PubMed  Google Scholar 

  35. Lahat E, Livne M, Barr J, et al. Interleukin-1beta levels in serum and cerebrospinal fluid of children with febrile seizures. Pediatr Neurol. 1997;17(1):34–6.

    Article  CAS  PubMed  Google Scholar 

  36. Miceli Sopo S, Cuomo B, Federico G, et al. In vivo and in vitro production of interleukin-1 after febrile convulsions. Pediatr Med Chir. 2001;23(2):83–7.

    CAS  PubMed  Google Scholar 

  37. Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123(Pt 7):1481–94.

    Article  PubMed  Google Scholar 

  38. Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain. 2004;127(Pt 3):701–12.

    PubMed  Google Scholar 

  39. Tan KM, Lennon VA, Klein CJ, et al. Clinical spectrum of voltage-gated potassium channel autoimmunity. Neurology. 2008;70(20):1883–90.

    Article  CAS  PubMed  Google Scholar 

  40. Saiz A, Blanco Y, Sabater L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain. 2008;131(Pt 10):2553–63.

    Article  PubMed  Google Scholar 

  41. Dalmau J, Tuzun E, Wu HY, et al. Paraneoplastic anti-N-methyl-d-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  42. Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  43. Riikonen R. Infantile spasms: therapy and outcome. J Child Neurol. 2004;19(6):401–4.

    PubMed  Google Scholar 

  44. Dravet C, Natale O, Magaudda A, et al. Status epilepticus in the Lennox-Gastaut syndrome. Rev Electroencephalogr Neurophysiol Clin. 1986;15(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  45. van Engelen BG, Renier WO, Weemaes CM, et al. High-dose intravenous immunoglobulin treatment in cryptogenic West and Lennox–Gastaut syndrome; an add-on study. Eur J Pediatr. 1994;153(10):762–9.

    Article  PubMed  Google Scholar 

  46. Mikati MA, Saab R, Fayad MN, et al. Efficacy of intravenous immunoglobulin in Landau–Kleffner syndrome. Pediatr Neurol. 2002;26(4):298–300.

    Article  PubMed  Google Scholar 

  47. Granata T, Fusco L, Gobbi G, et al. Experience with immunomodulatory treatments in Rasmussen’s encephalitis. Neurology. 2003;61(12):1807–10.

    Article  CAS  PubMed  Google Scholar 

  48. Marchi N, Granata T, Freri E, et al. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One. 2011;6(3):e18200.

    Article  CAS  PubMed  Google Scholar 

  49. Vezzani A, Conti M, De Luigi A, et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci. 1999;19(12):5054–65.

    CAS  PubMed  Google Scholar 

  50. Kanemoto K, Kawasaki J, Miyamoto T, et al. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol. 2000;47(5):571–4.

    Article  CAS  PubMed  Google Scholar 

  51. Peltola J, Keranen T, Rainesalo S, et al. Polymorphism of the interleukin-1 gene complex in localization-related epilepsy. Ann Neurol. 2001;50(2):275–6.

    Article  CAS  PubMed  Google Scholar 

  52. Buono RJ, Ferraro TN, O’Connor MJ, et al. Lack of association between an interleukin 1 beta (IL-1beta) gene variation and refractory temporal lobe epilepsy. Epilepsia. 2001;42(6):782–4.

    Article  CAS  PubMed  Google Scholar 

  53. Heils A, Haug K, Kunz WS, et al. Interleukin-1beta gene polymorphism and susceptibility to temporal lobe epilepsy with hippocampal sclerosis. Ann Neurol. 2000;48(6):948–50.

    Article  CAS  PubMed  Google Scholar 

  54. Boer K, Crino PB, Gorter JA, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 2010;20(4):704–19.

    Article  CAS  PubMed  Google Scholar 

  55. van Gassen KLI, de Wit M, Koerkamp MJAG, et al. Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia. 2008;49(6):1055–65.

    Article  PubMed  CAS  Google Scholar 

  56. Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46(11):1724–43.

    Article  CAS  PubMed  Google Scholar 

  57. Gallagher BB, Flanigin HF, King DW, et al. The effect of electrical stimulation of medial temporal lobe structures in epileptic patients upon ACTH, prolactin, and growth hormone. Neurology. 1987;37(2):299–303.

    Article  CAS  PubMed  Google Scholar 

  58. Galimberti CA, Magri F, Copello F, et al. Seizure frequency and cortisol and dehydroepiandrosterone sulfate (DHEAS) levels in women with epilepsy receiving antiepileptic drug treatment. Epilepsia. 2005;46(4):517–23.

    Article  CAS  PubMed  Google Scholar 

  59. Calabrese VP, Gruemer HD, Tripathi HL, et al. Serum cortisol and cerebrospinal fluid beta-endorphins in status epilepticus: their possible relation to prognosis. Arch Neurol. 1993;50(7):689–93.

    Article  CAS  PubMed  Google Scholar 

  60. Yang T, Zhou D, Stefan H. Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci. 2010;296(1–2):1–6.

    Article  PubMed  Google Scholar 

  61. Amato C, Elia M, Musumeci SA, et al. Transient MRI abnormalities associated with partial status epilepticus: a case report. Eur J Radiol. 2001;38(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  62. Lansberg MG, O’Brien MW, Norbash AM, et al. MRI abnormalities associated with partial status epilepticus. Neurology. 1999;52(5):1021–7.

    Article  CAS  PubMed  Google Scholar 

  63. Paladin F, Bonazza A, Mameli R, et al. Cryptogenic temporal lobe epilepsy: semi-quantitative interictal 99mTc HMPAO SPECT: statistical correlation with clinical data and EEG. Ital J Neurol Sci. 1999;20(4):237–42.

    Article  CAS  PubMed  Google Scholar 

  64. Pavlovsky L, Seiffert E, Heinemann U, et al. Persistent BBB disruption may underlie alpha interferon-induced seizures. J Neurol. 2005;252(1):42–6.

    Article  PubMed  Google Scholar 

  65. Tomkins O, Kaufer D, Korn A, et al. Frequent blood-brain barrier disruption in the human cerebral cortex. Cell Mol Neurobiol. 2001;21(6):675–91.

    Article  CAS  PubMed  Google Scholar 

  66. Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol. 2003;62(6):593–604.

    CAS  PubMed  Google Scholar 

  67. Librizzi L, Noe F, Vezzani A, et al. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood–brain barrier damage. Ann Neurol. 2012;72(1):82–90.

    Article  PubMed  Google Scholar 

  68. Zucker DK, Wooten GF, Lothman EW. Blood–brain barrier changes with kainic acid-induced limbic seizures. Exp Neurol. 1983;79(2):422–33.

    Article  CAS  PubMed  Google Scholar 

  69. Fabene PF, Navarro G, Martinello M, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nature Med. 2008;14(12):1377–83.

    Article  CAS  PubMed  Google Scholar 

  70. Duffy BA, Choy M, Riegler J, et al. Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. Neuroimage. 2012;60(2):1149–55.

    Article  CAS  PubMed  Google Scholar 

  71. Louboutin JP, Chekmasova A, Marusich E, et al. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J. 2011;25(2):737–53.

    Article  CAS  PubMed  Google Scholar 

  72. Tomkins O, Friedman O, Ivens S, et al. Blood–brain barrier disruption results in delayed functional and structural alterations in the rat neocortex. Neurobiol Dis. 2007;25(2):367–77.

    Article  CAS  PubMed  Google Scholar 

  73. Uva L, Librizzi L, Marchi N, et al. Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood–brain barrier permeability. Neuroscience. 2008;151(1):303–12.

    Article  CAS  PubMed  Google Scholar 

  74. Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia. 2011;52(Suppl. 3):33–9.

    Article  CAS  PubMed  Google Scholar 

  75. Baram TZ, Hatalski CG. Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci. 1998;21(11):471–6.

    Article  CAS  PubMed  Google Scholar 

  76. Huerta PT, Kowal C, DeGiorgio LA, et al. Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci USA. 2006;103(3):678–83.

    Article  CAS  PubMed  Google Scholar 

  77. Elenkov IJ, Chrousos GP. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab. 1999;10(9):359–68.

    Article  CAS  PubMed  Google Scholar 

  78. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734–44.

    Article  CAS  PubMed  Google Scholar 

  79. Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci. 2002;3(3):216–27.

    Article  CAS  PubMed  Google Scholar 

  80. Stoll G, Jander S, Schroeter M. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm Suppl. 2000;59:81–9.

    CAS  PubMed  Google Scholar 

  81. Graus F, Saiz A, Dalmau J. Antibodies and neuronal autoimmune disorders of the CNS. J Neurol. 2009;257(4):509–17.

    Article  PubMed  CAS  Google Scholar 

  82. Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.

    Article  CAS  PubMed  Google Scholar 

  83. Liou HH, Wang CR, Chou HC, et al. Anticardiolipin antisera from lupus patients with seizures reduce a GABA receptor-mediated chloride current in snail neurons. Life Sci. 1994;54(15):1119–25.

    Article  CAS  PubMed  Google Scholar 

  84. Wyss-Coray T, Lin C, Yan F, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  85. Aloisi F. Immune function of microglia. Glia. 2001;36(2):165–79.

    Article  CAS  PubMed  Google Scholar 

  86. Vezzani A, Maroso M, Balosso S, et al. IL-1 receptor/toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun. 2011;25(7):1281–9.

    Article  CAS  PubMed  Google Scholar 

  87. Becher B, Prat A, Antel JP. Brain–immune connection: immuno-regulatory properties of CNS-resident cells. Glia. 2000;29(4):293–304.

    Article  CAS  PubMed  Google Scholar 

  88. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77–98.

    Article  CAS  PubMed  Google Scholar 

  89. Rizzi M, Perego C, Aliprandi M, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14(3):494–503.

    Article  CAS  PubMed  Google Scholar 

  90. Turrin NP, Rivest S. Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis. 2004;16(2):321–34.

    Article  CAS  PubMed  Google Scholar 

  91. Plata-Salaman CR, Ilyin SE, Turrin NP, et al. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res. 2000;75(2):248–58.

    Article  CAS  PubMed  Google Scholar 

  92. De Simoni MG, Perego C, Ravizza T, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12(7):2623–33.

    Article  PubMed  Google Scholar 

  93. Vezzani A, Moneta D, Conti M, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA. 2000;97(21):11534–9.

    Article  CAS  PubMed  Google Scholar 

  94. Dube C, Vezzani A, Behrens M, et al. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol. 2005;57(1):152–5.

    Article  CAS  PubMed  Google Scholar 

  95. Yuhas Y, Shulman L, Weizman A, et al. Involvement of tumor necrosis factor alpha and interleukin-1beta in enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae. Infect Immun. 1999;67(3):1455–60.

    CAS  PubMed  Google Scholar 

  96. Ravizza T, Lucas SM, Balosso S, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia. 2006;47(7):1160–8.

    Article  CAS  PubMed  Google Scholar 

  97. Vezzani A, Baram TZ. New roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 2007;7(2):45–50.

    Article  PubMed  Google Scholar 

  98. Probert L, Akassoglou K, Pasparakis M, et al. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci USA. 1995;92(24):11294–8.

    Article  CAS  PubMed  Google Scholar 

  99. Meli DN, Loeffler JM, Baumann P, et al. In pneumococcal meningitis a novel water-soluble inhibitor of matrix metalloproteinases and TNF-alpha converting enzyme attenuates seizures and injury of the cerebral cortex. J Neuroimmunol. 2004;151(1–2):6–11.

    Article  CAS  PubMed  Google Scholar 

  100. Yuhas Y, Weizman A, Ashkenazi S. Bidirectional concentration-dependent effects of tumor necrosis factor alpha in Shigella dysenteriae-related seizures. Infect Immun. 2003;71(4):2288–91.

    Article  CAS  PubMed  Google Scholar 

  101. Balosso S, Ravizza T, Perego C, et al. Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol. 2005;57(6):804–12.

    Article  CAS  PubMed  Google Scholar 

  102. Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience. 2006;137(1):301–8.

    Article  CAS  PubMed  Google Scholar 

  103. De Sarro G, Rotiroti D, Audino MG, et al. Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice. Neuroimmunomodulation. 1994;1(6):361–9.

    Article  PubMed  Google Scholar 

  104. Nistico G, De Sarro G. Behavioral and electrocortical spectrum power effects after microinfusion of lymphokines in several areas of the rat brain. Ann N Y Acad Sci. 1991;621:119–34.

    Article  CAS  PubMed  Google Scholar 

  105. Cuevas P, Gimenez-Gallego G. Antiepileptic effects of acidic fibroblast growth factor examined in kainic acid-mediated seizures in the rat. Neurosci Lett. 1996;203(1):66–8.

    Article  CAS  PubMed  Google Scholar 

  106. Liu Z, Holmes GL. Basic fibroblast growth factor is highly neuroprotective against seizure-induced long-term behavioural deficits. Neuroscience. 1997;76(4):1129–38.

    Article  CAS  PubMed  Google Scholar 

  107. Liu Z, Holmes GL. Basic fibroblast growth factor-induced seizures in rats. Neurosci Lett. 1997;233(2–3):85–8.

    Article  CAS  PubMed  Google Scholar 

  108. Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA. 1993;90(21):10061–5.

    Article  CAS  PubMed  Google Scholar 

  109. Cunningham AJ, Murray CA, O’Neill LA, et al. Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 1996;203(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  110. Samland H, Huitron-Resendiz S, Masliah E, et al. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res. 2003;73(2):176–87.

    Article  CAS  PubMed  Google Scholar 

  111. Lehtimaki KA, Peltola J, Koskikallio E, et al. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res. 2003;110(2):253–60.

    Article  CAS  PubMed  Google Scholar 

  112. Adams J, Collaco-Moraes Y, de Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem. 1996;66(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  113. Kamikawa H, Hori T, Nakane H, et al. IL-1beta increases norepinephrine level in rat frontal cortex: involvement of prostanoids, NO, and glutamate. Am J Physiol. 1998;275(3 Pt 2):R803–10.

    CAS  PubMed  Google Scholar 

  114. Schneider H, Pitossi F, Balschun D, et al. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci USA. 1998;95(13):7778–83.

    Article  CAS  PubMed  Google Scholar 

  115. Viviani B, Bartesaghi S, Gardoni F, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23(25):8692–700.

    CAS  PubMed  Google Scholar 

  116. Wang S, Cheng Q, Malik S, et al. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther. 2000;292(2):497–504.

    CAS  PubMed  Google Scholar 

  117. Ye ZC, Sontheimer H. Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport. 1996;7(13):2181–5.

    Article  CAS  PubMed  Google Scholar 

  118. Ravizza T, Noe F, Zardoni D, et al. Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis. 2008;31(3):327–33.

    Article  CAS  PubMed  Google Scholar 

  119. Vezzani A, Moneta D, Richichi C, et al. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43(Suppl. 5):30–5.

    Article  CAS  PubMed  Google Scholar 

  120. Heida JG, Pittman QJ. Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia. 2005;46(12):1906–13.

    Article  CAS  PubMed  Google Scholar 

  121. Marchi N, Fan Q, Ghosh C, et al. Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis. 2009;33(2):171–81.

    Article  CAS  PubMed  Google Scholar 

  122. Bauer J, Berkenbosch F, Van Dam AM, et al. Demonstration of interleukin-1 beta in Lewis rat brain during experimental allergic encephalomyelitis by immunocytochemistry at the light and ultrastructural level. J Neuroimmunol. 1993;48(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  123. Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA. 1989;86(19):7611–5.

    Article  CAS  PubMed  Google Scholar 

  124. Rijkers K, Majoie HJ, Hoogland G, et al. The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol. 2009;216(2):258–71.

    Article  CAS  PubMed  Google Scholar 

  125. Docagne F, Campbell SJ, Bristow AF, et al. Differential regulation of type I and type II interleukin-1 receptors in focal brain inflammation. Eur J Neurosci. 2005;21(5):1205–14.

    Article  PubMed  Google Scholar 

  126. Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis. 2006;23(2):237–46.

    Article  CAS  PubMed  Google Scholar 

  127. Kim HJ, Chung JI, Lee SH, et al. Involvement of endogenous prostaglandin F2alpha on kainic acid-induced seizure activity through FP receptor: the mechanism of proconvulsant effects of COX-2 inhibitors. Brain Res. 2008;1193:153–61.

    Article  CAS  PubMed  Google Scholar 

  128. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci. 2001;13(3):569–75.

    Article  CAS  PubMed  Google Scholar 

  129. Claycomb RJ, Hewett SJ, Hewett JA. Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZ-induced seizure generation and kindling acquisition. Epilepsia. 2011;52(2):273–83.

    CAS  PubMed  Google Scholar 

  130. Naffah-Mazzacoratti MG, Bellissimo MI, Cavalheiro EA. Profile of prostaglandin levels in the rat hippocampus in pilocarpine model of epilepsy. Neurochem Int. 1995;27(6):461–6.

    CAS  PubMed  Google Scholar 

  131. Oliveira MS, Furian AF, Rambo LM, et al. Modulation of pentylenetetrazol-induced seizures by prostaglandin E2 receptors. Neuroscience. 2008;152(4):1110–8.

    Article  CAS  PubMed  Google Scholar 

  132. Holtman L, van Vliet EA, van Schaik R, et al. Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res. 2009;84(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  133. Galic MA, Riazi K, Heida JG, et al. Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci. 2008;28(27):6904–13.

    Article  CAS  PubMed  Google Scholar 

  134. Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    Article  CAS  PubMed  Google Scholar 

  135. Bianchi ME, Manfredi AA. Immunology: dangers in and out. Science. 2009;323(5922):1683–4.

    Article  CAS  PubMed  Google Scholar 

  136. Maroso M, Balosso S, Ravizza T, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16(4):413–9.

    Article  CAS  PubMed  Google Scholar 

  137. Ito H, Mori K, Toda Y, et al. A case of acute encephalitis with refractory, repetitive partial seizures, presenting autoantibody to glutamate receptor Gluepsilon2. Brain Dev. 2005;27(7):531–4.

    Article  PubMed  Google Scholar 

  138. Takahashi Y, Mori H, Mishina M, et al. Autoantibodies to NMDA receptor in patients with chronic forms of epilepsia partialis continua. Neurology. 2003;61(7):891–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Iain Patefield and Melanie Gatt who provided medical writing assistance, and Andrea Bothwell who provided post-submission amendments, all of inScience Communications, Springer Healthcare. This assistance was funded by UCB Pharma. Mercé Falip has received funding for lectures from the Medical Department of UCB; Xavier Salas-Puig declares no conflict of interest. Carlos Cara is an employee of UCB Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercé Falip.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falip, M., Salas-Puig, X. & Cara, C. Causes of CNS Inflammation and Potential Targets for Anticonvulsants. CNS Drugs 27, 611–623 (2013). https://doi.org/10.1007/s40263-013-0078-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0078-6

Keywords

Navigation