Skip to main content
Log in

General Framework to Quantitatively Predict Pharmacokinetic Induction Drug–Drug Interactions Using In Vitro Data

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Introduction

Metabolic inducers can expose people with polypharmacy to adverse health outcomes. A limited fraction of potential drug–drug interactions (DDIs) have been or can ethically be studied in clinical trials, leaving the vast majority unexplored. In the present study, an algorithm has been developed to predict the induction DDI magnitude, integrating data related to drug-metabolising enzymes.

Methods

The area under the curve ratio (AUCratio) resulting from the DDI with a victim drug in the presence and absence of an inducer (rifampicin, rifabutin, efavirenz, or carbamazepine) was predicted from various in vitro parameters and then correlated with the clinical AUCratio (N = 319). In vitro data including fraction unbound in plasma, substrate specificity and induction potential for cytochrome P450s, phase II enzymes and uptake, and efflux transporters were integrated. To represent the interaction potential, the in vitro metabolic metric (IVMM) was generated by combining the fraction of substrate metabolised by each hepatic enzyme of interest with the corresponding in vitro fold increase in enzyme activity (E) value for the inducer.

Results

Two independent variables were deemed significant and included in the algorithm: IVMM and fraction unbound in plasma. The observed and predicted magnitudes of the DDIs were categorised accordingly: no induction, mild, moderate, and strong induction. DDIs were assumed to be well classified if the predictions were in the same category as the observations, or if the ratio between these two was < 1.5-fold. This algorithm correctly classified 70.5% of the DDIs.

Conclusion

This research presents a rapid screening tool to identify the magnitude of potential DDIs utilising in vitro data which can be highly advantageous in early drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Viktil KK, Blix HS, Moger TA, Reikvam A. Polypharmacy as commonly defined is an indicator of limited value in the assessment of drug-related problems. Br J Clin Pharmacol. 2007;63(2):187–95.

    Article  PubMed  Google Scholar 

  2. Tornio A, Filppula AM, Niemi M, Backman JT. Clinical studies on drug–drug interactions involving metabolism and transport: methodology, pitfalls, and interpretation. Clin Pharmacol Ther. 2019;105(6):1345–61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dechanont S, Maphanta S, Butthum B, Kongkaew C. Hospital admissions/visits associated with drug–drug interactions: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2014;23(5):489–97.

    Article  PubMed  Google Scholar 

  4. Obreli-Neto PR, Nobili A, de Oliveira BA, Guidoni CM, de Lyra Júnior DP, Pilger D, et al. Adverse drug reactions caused by drug–drug interactions in elderly outpatients: a prospective cohort study. Eur J Clin Pharmacol. 2012;68(12):1667–76.

    Article  PubMed  Google Scholar 

  5. Lu C, Di L. In vitro and in vivo methods to assess pharmacokinetic drug- drug interactions in drug discovery and development. Biopharm Drug Dispos. 2020;41(1–2):3–31.

    Article  CAS  PubMed  Google Scholar 

  6. Ito K, Sugiyama Y. Use of clearance concepts and modeling techniques in the prediction of metabolic drug–drug interactions. Trends Pharmacol Sci. 2010;31(8):351–5.

    Article  CAS  PubMed  Google Scholar 

  7. Peng Y, Cheng Z, Xie F. Evaluation of pharmacokinetic drug-drug interactions: a review of the mechanisms, in vitro and in silico approaches. Metabolites. 2021;11(2):75.

  8. Boulenc X, Barberan O. Metabolic-based drug–drug interactions prediction, recent approaches for risk assessment along drug development. Drug Metabol Drug Interact. 2011;26(4):147–68.

    Article  CAS  PubMed  Google Scholar 

  9. Min JS, Bae SK. Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res. 2017;40(12):1356–79.

    Article  CAS  PubMed  Google Scholar 

  10. Marsousi N, Desmeules JA, Rudaz S, Daali Y. Usefulness of PBPK modeling in incorporation of clinical conditions in personalized medicine. J Pharm Sci. 2017;106(9):2380–91.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Yang Y, Grimstein M, Fan J, Grillo JA, Huang SM, et al. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: an update on the 2018–2019 submissions to the US FDA’s Office of clinical pharmacology. J Clin Pharmacol. 2020;60(Suppl 1):S160–78.

    CAS  PubMed  Google Scholar 

  12. Zhou D, Sunzel M, Ribadeneira MD, Smith MA, Desai D, Lin J, et al. A clinical study to assess CYP1A2 and CYP3A4 induction by AZD7325, a selective GABA(A) receptor modulator—an in vitro and in vivo comparison. Br J Clin Pharmacol. 2012;74(1):98–108.

    Article  CAS  PubMed  Google Scholar 

  13. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.

  14. Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, et al. Cytochrome P450 3A induction predicts P-glycoprotein induction; Part 2: prediction of decreased substrate exposure after rifabutin or carbamazepine. Clin Pharmacol Ther. 2018;104(6):1191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer zu Schwabedissen HE, Oswald S, Bresser C, Nassif A, Modess C, Desta Z, et al. Compartment-specific gene regulation of the CAR inducer efavirenz in vivo. Clin Pharmacol Ther. 2012;92(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  16. Solutions UDI. DIDB—the Drug Interaction Database. 2022.

  17. Elmeliegy M, Vourvahis M, Guo C, Wang DD. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: review of clinical drug–drug interaction studies. Clin Pharmacokinet. 2020;59(6):699–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van de Steeg E, Venhorst J, Jansen HT, Nooijen IH, DeGroot J, Wortelboer HM, et al. Generation of Bayesian prediction models for OATP-mediated drug–drug interactions based on inhibition screen of OATP1B1, OATP1B1∗15 and OATP1B3. Eur J Pharm Sci. 2015;5(70):29–36.

    Article  Google Scholar 

  19. Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, et al. Cytochrome P450 3A induction predicts P-glycoprotein Induction; Part 1: establishing induction relationships using ascending dose rifampin. Clin Pharmacol Ther. 2018;104(6):1182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burhenne J, Matthée AK, Pasáková I, Röder C, Heinrich T, Haefeli WE, et al. No evidence for induction of ABC transporters in peripheral blood mononuclear cells in humans after 14 days of efavirenz treatment. Antimicrob Agents Chemother. 2010;54(10):4185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57(4):473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos. 2014;42(8):1349–56.

    Article  PubMed  Google Scholar 

  23. Shou M, Hayashi M, Pan Y, Xu Y, Morrissey K, Xu L, et al. Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab Dispos. 2008;36(11):2355–70.

    Article  CAS  PubMed  Google Scholar 

  24. Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.

    Article  CAS  PubMed  Google Scholar 

  25. Fahmi OA, Maurer TS, Kish M, Cardenas E, Boldt S, Nettleton D. A combined model for predicting CYP3A4 clinical net drug–drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro. Drug Metab Dispos. 2008;36(8):1698–708.

    Article  CAS  PubMed  Google Scholar 

  26. DrugBank. Tenofovir. 03/07/2021 [cited 2022 08/03/2022]; Available from: https://go.drugbank.com/drugs/DB14126.

  27. Veal GJ, Back DJ. Metabolism of zidovudine. Gen Pharmacol. 1995;26(7):1469–75.

    Article  CAS  PubMed  Google Scholar 

  28. Hellinger E, Veszelka S, Tóth AE, Walter F, Kittel A, Bakk ML, et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood–brain barrier penetration models. Eur J Pharm Biopharm. 2012;82(2):340–51.

    Article  CAS  PubMed  Google Scholar 

  29. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.

    Article  CAS  PubMed  Google Scholar 

  30. Tolledo EC, Miksys S, Gonzalez FJ, Tyndale RF. Propranolol is a mechanism-based inhibitor of CYP2D and CYP2D6 in humanized CYP2D6-transgenic mice: effects on activity and drug responses. Br J Pharmacol. 2020;177(3):701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eberl S, Renner B, Neubert A, Reisig M, Bachmakov I, König J, et al. Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet. 2007;46(12):1039–49.

    Article  CAS  PubMed  Google Scholar 

  32. Malaty LI, Kuper JJ. Drug interactions of HIV protease inhibitors. Drug Saf. 1999;20(2):147–69.

    Article  CAS  PubMed  Google Scholar 

  33. Back D. New drug interactions in HIV and HCV. Retrovirology. 2012;9(Suppl 1):I8-I.

  34. FDA. VIEKIRA PAK (ombitasvir, paritaprevir, and ritonavir tablets; dasabuvir tablets) label. 2018 07/2018 [cited 09/03/2022]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206619s018lbl.pdf.

  35. Garrison KL, German P, Mogalian E, Mathias A. The drug–drug interaction potential of antiviral agents for the treatment of chronic hepatitis C infection. Drug Metab Dispos. 2018;46(8):1212–25.

    Article  CAS  PubMed  Google Scholar 

  36. McFeely SJ, Ritchie TK, Yu J, Nordmark A, Berglund EG, Levy RH, et al. Inhibitors of organic anion-transporting polypeptides 1B1 and 1B3: clinical relevance and regulatory perspective. J Clin Pharmacol. 2020;60(8):1087–98.

    Article  CAS  PubMed  Google Scholar 

  37. Shitara Y. Clinical importance of OATP1B1 and OATP1B3 in drug–drug interactions. Drug Metab Pharmacokinet. 2011;26(3):220–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kiang TKL. Clinical pharmacokinetics and drug–drug interactions of elbasvir/grazoprevir. Eur J Drug Metab Pharmacokinet. 2018;43(5):509–31.

    Article  CAS  PubMed  Google Scholar 

  39. FDA. Zepatier (elbasvir and grazoprevir) tables, for oral use label. 2016.

  40. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA. 1987;84(21):7735–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of the HIV protease inhibitors 3: effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. Drug Metab Dispos. 2012;40(3):610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gurley BJ, Swain A, Williams DK, Barone G, Battu SK. Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol Nutr Food Res. 2008;52(7):772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gurley BJ, Swain A, Barone GW, Williams DK, Breen P, Yates CR, et al. Effect of goldenseal (Hydrastis canadensis) and kava kava (Piper methysticum) supplementation on digoxin pharmacokinetics in humans. Drug Metab Dispos. 2007;35(2):240–5.

    Article  CAS  PubMed  Google Scholar 

  45. Gurley BJ, Barone GW, Williams DK, Carrier J, Breen P, Yates CR, et al. Effect of milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa) supplementation on digoxin pharmacokinetics in humans. Drug Metab Dispos. 2006;34(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  46. Härtter S, Koenen-Bergmann M, Sharma A, Nehmiz G, Lemke U, Timmer W, et al. Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin. Br J Clin Pharmacol. 2012;74(3):490–500.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Administration FaD. Drug development and drug interactions: table of substrates, inhibitors and inducers. 2020 03/10/2020 [cited 06/04/2021]; Available from: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#table4-1.

  48. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin Pharmacokinet. 2008;47(5):285–95.

    Article  CAS  PubMed  Google Scholar 

  49. Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.

    Article  CAS  PubMed  Google Scholar 

  50. Johansson I, Ingelman-Sundberg M. Genetic polymorphism and toxicology—with emphasis on cytochrome P450. Toxicol Sci. 2010;120(1):1–13.

    Article  PubMed  Google Scholar 

  51. Wang PF, Neiner A, Kharasch ED. Efavirenz metabolism: influence of polymorphic CYP2B6 variants and stereochemistry. Drug Metab Dispos. 2019;47(10):1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dean L. Voriconazole therapy and CYP2C19 genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical genetics summaries. Bethesda: National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  53. Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Hou K, Liu F, Luo X, He S, Hu L, et al. The influence of CYP2C19 polymorphisms on voriconazole trough concentrations: systematic review and meta-analysis. Mycoses. 2021;64(8):860–73.

    Article  CAS  PubMed  Google Scholar 

  55. Bachman K. Chapter 8—drug metabolism. New York: Academic Press; 2009.

    Google Scholar 

  56. Hardy KD, Wahlin MD, Papageorgiou I, Unadkat JD, Rettie AE, Nelson SD. Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells. Drug Metab Dispos. 2014;42(1):162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cho YY, Jeong HU, Kim JH, Lee HS. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes. Drug Des Dev Ther. 2014;8:2137–45.

    Google Scholar 

  58. Liu L, Mugundu GM, Kirby BJ, Samineni D, Desai PB, Unadkat JD. Quantification of human hepatocyte cytochrome P450 enzymes and transporters induced by HIV protease inhibitors using newly validated LC–MS/MS cocktail assays and RT-PCR. Biopharm Drug Dispos. 2012;33(4):207–17.

    Article  PubMed  Google Scholar 

  59. Gerin B, Dell’Aiera S, Richert L, Smith S, Chanteux H. Assessment of cytochrome P450 (1A2, 2B6, 2C9 and 3A4) induction in cryopreserved human hepatocytes cultured in 48-well plates using the cocktail strategy. Xenobiotica. 2013;43(4):320–35.

    Article  CAS  PubMed  Google Scholar 

  60. Lübberstedt M, Müller-Vieira U, Mayer M, Biemel KM, Knöspel F, Knobeloch D, et al. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods. 2011;63(1):59–68.

    Article  PubMed  Google Scholar 

  61. Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003;31(4):421–31.

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Liu L, Laille E, Kumar G, Surapaneni S. In vitro assessment of cytochrome P450 inhibition and induction potential of azacitidine. Cancer Chemother Pharmacol. 2010;65(5):995–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Katoh M, Matsui T, Nakajima M, Tateno C, Soeno Y, Horie T, et al. In vivo induction of human cytochrome P450 enzymes expressed in chimeric mice with humanized liver. Drug Metab Dispos. 2005;33(6):754–63.

    Article  CAS  PubMed  Google Scholar 

  64. Trottier J, El Husseini D, Perreault M, Pâquet S, Caron P, Bourassa S, et al. The human UGT1A3 enzyme conjugates norursodeoxycholic acid into a C23-ester glucuronide in the liver. J Biol Chem. 2010;285(2):1113–21.

    Article  CAS  PubMed  Google Scholar 

  65. Argikar UA, Senekeo-Effenberger K, Larson EE, Tukey RH, Remmel RP. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice. Xenobiotica. 2009;39(11):826–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004;32(1):140–8.

    Article  CAS  PubMed  Google Scholar 

  67. Fang HL, Strom SC, Ellis E, Duanmu Z, Fu J, Duniec-Dmuchowski Z, et al. Positive and negative regulation of human hepatic hydroxysteroid sulfotransferase (SULT2A1) gene transcription by rifampicin: roles of hepatocyte nuclear factor 4alpha and pregnane X receptor. J Pharmacol Exp Ther. 2007;323(2):586–98.

    Article  CAS  PubMed  Google Scholar 

  68. Endo-Tsukude C, Kato M, Kaneko A, Iida S, Kuramoto S, Ishigai M, et al. Risk of CYP2C9 induction analyzed by a relative factor approach with human hepatocytes. Drug Metab Pharmacokinet. 2019;34(5):325–33.

    Article  CAS  PubMed  Google Scholar 

  69. Bernasconi C, Pelkonen O, Andersson TB, Strickland J, Wilk-Zasadna I, Asturiol D, et al. Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol In Vitro. 2019;60:212–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Faucette SR, Wang H, Hamilton GA, Jolley SL, Gilbert D, Lindley C, et al. Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos. 2004;32(3):348–58.

    Article  CAS  PubMed  Google Scholar 

  71. Kharasch ED, Whittington D, Ensign D, Hoffer C, Bedynek PS, Campbell S, et al. Mechanism of efavirenz influence on methadone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2012;91(4):673–84.

    Article  CAS  PubMed  Google Scholar 

  72. Katoh M, Watanabe M, Tabata T, Sato Y, Nakajima M, Nishimura M, et al. In vivo induction of human cytochrome P450 3A4 by rifabutin in chimeric mice with humanized liver. Xenobiotica. 2005;35(9):863–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Siccardi.

Ethics declarations

Funding

This project is funded by the Engineering and Physical Sciences Research Council (EPSRC).

Conflict of interest

Marco Siccardi has received research grant funding from Janssen and ViiV unrelated to this work. M.S. is currently employed by Labcorp. Saye Khoo has received grant support for the Liverpool drug interaction website (http://www.covid-druginteractions.org) from AbbVie, Gilead, MSD, Novartis, and Sobi. S.K. has also received speakers’ honoraria from ViiV Healthcare, Gilead Sciences, and AbbVie; consultancy fees from ViiV Healthcare and Merck; and research funding from Gilead Sciences and ViiV Healthcare unrelated to this work. Sandra Grañana-Castillo, Angharad Williams, Thao Pham, Daryl Hodge, Asangaedem Akpan, and Rachel Bearon declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design. Data collection was performed by SGC and analysis were performed by SGC with additional contribution of AW. The first draft of the manuscript was written by SGC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 275 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grañana-Castillo, S., Williams, A., Pham, T. et al. General Framework to Quantitatively Predict Pharmacokinetic Induction Drug–Drug Interactions Using In Vitro Data. Clin Pharmacokinet 62, 737–748 (2023). https://doi.org/10.1007/s40262-023-01229-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01229-3

Navigation