Skip to main content
Log in

Role of Genetic Polymorphisms in Drug-Metabolizing Enzyme-Mediated Toxicity and Pharmacokinetic Resistance to Anti-Cancer Agents: A Review on the Pharmacogenomics Aspect

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The inter-individual differences in cancer susceptibility are somehow correlated with the genetic differences that are caused by the polymorphisms. These genetic variations in drug-metabolizing enzymes/drug-inactivating enzymes may negatively or positively affect the pharmacokinetic profile of chemotherapeutic agents that eventually lead to pharmacokinetic resistance and toxicity against anti-cancer drugs. For instance, the CYP1B1*3 allele is associated with CYP1B1 overexpression and consequent resistance to a variety of taxanes and platins, while 496T>G is associated with lower levels of dihydropyrimidine dehydrogenase, which results in severe toxicities related to 5-fluorouracil. In this context, a pharmacogenomics approach can be applied to ascertain the role of the genetic make-up in a person’s response to any drug. This approach collectively utilizes pharmacology and genomics to develop effective and safe medications that are devoid of resistance problems. In addition, recently reported genomics studies revealed the impact of many single nucleotide polymorphisms in tumors. These studies emphasized the importance of single nucleotide polymorphisms in drug-metabolizing enzymes on the effect of anti-tumor drugs. In this review, we discuss the pharmacogenomics aspect of polymorphisms in detail to provide an insight into the genetic manipulations in drug-metabolizing enzymes that are responsible for pharmacokinetic resistance or toxicity against well-known anti-cancer drugs. Special emphasis is placed on different deleterious single nucleotide polymorphisms and their effect on pharmacokinetic resistance. The information provided in this report may be beneficial to researchers, especially those who are working in the field of biotechnology and human genetics, in rationally manipulating the genetic information of patients with cancer who are undergoing chemotherapy to avoid the problem of pharmacokinetic resistance/toxicity associated with drug-metabolizing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padma VV. An overview of targeted cancer therapy. Biomedicine. 2015;5(4):1–6.

    Article  Google Scholar 

  2. Khazaei Z, Sohrabivafa M, Momenabadi V, Moayed L, Goodarzi E. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide prostate cancers and their relationship with the human development index. Adv Hum Biol. 2019;9(3):245.

    Article  Google Scholar 

  3. Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 2019;54(2):407–19.

    CAS  PubMed  Google Scholar 

  4. Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15(1):1–13.

    Article  CAS  Google Scholar 

  5. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141.

    PubMed  PubMed Central  Google Scholar 

  7. Blossey HC, Wander HE, Koebberling J, Nagel GA. Pharmacokinetic and pharmacodynamic basis for the treatment of metastatic breast cancer with high-dose medroxyprogesterone acetate. Cancer. 1984;54(S1):1208–15.

    Article  CAS  PubMed  Google Scholar 

  8. Yin S, Bhattacharya R, Cabral F. Human mutations that confer paclitaxel resistance. Mol Cancer Ther. 2010;9(2):327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21):2211–21.

    Article  CAS  PubMed  Google Scholar 

  10. Raju B, Choudhary S, Narendra G, Verma H, Silakari O. Molecular modeling approaches to address drug-metabolizing enzymes (DMEs) mediated chemoresistance: a review. Drug Metab Rev. 2021;53(1):45–75.

    Article  CAS  PubMed  Google Scholar 

  11. Obligacion R, Murray M, Ramzan I. Drug-metabolizing enzymes and transporters: expression in the human prostate and roles in prostate drug disposition. J Androl. 2006;27(2):138–50.

    Article  CAS  PubMed  Google Scholar 

  12. Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab. 2012;13(9):1327–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goetz M, Kamal A, Ames M. Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther. 2008;83(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen T-A, Tychopoulos M, Bichat F, Zimmermann C, Flinois J-P, Diry M, et al. Improvement of cyclophosphamide activation by CYP2B6 mutants: from in silico to ex vivo. Mol Pharmacol. 2008;73(4):1122–33.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Song J, Liang X, Yin Y, Zuo T, Chen D, et al. Hyaluronic acid-modified cationic nanoparticles overcome enzyme CYP1B1-mediated breast cancer multidrug resistance. Nanomedicine. 2019;14(4):447–64.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Steppi A, Zhou Y, Mao F, Miller PC, He MM, et al. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine. Sci Rep. 2017;7(1):1–11.

    Google Scholar 

  17. Abbott JM, Calinski D, Hollenberg P. Metabolism of cyclophosphamide by CYP 2B6 and associated polymorphism. Wiley Online Library. 2013;26(S1):1007–7.

  18. Cronin-Fenton DP, Damkier P, Lash TL. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol. 2014;10(1):107–22.

    Article  CAS  PubMed  Google Scholar 

  19. Sahu A, Ramaswamy A, Ostwal V. Dihydro pyrimidine dehydrogenase deficiency in patients treated with capecitabine based regimens: a tertiary care centre experience. J Gastrointest Oncol. 2016;7(3):380.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fidai SS, Sharma AE, Johnson DN, Segal JP, Lastra RR. Dihydropyrimidine dehydrogenase deficiency as a cause of fatal 5-fluorouracil toxicity. Autops Case Rep. 2018;8(4): e2018049.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol. 2009;5(7):703–29.

    Article  CAS  PubMed  Google Scholar 

  22. Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23(4):223–35.

    Article  CAS  PubMed  Google Scholar 

  23. Kaur G, Gupta S, Singh P, Ali V, Kumar V, Verma M. Drug-metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol. 2020;22(10):1667–80.

    Article  CAS  PubMed  Google Scholar 

  24. Sim S, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  25. Alwi ZB. The use of SNPs in pharmacogenomics studies. Malays J Med Sci. 2005;12(2):4–12.

    PubMed  PubMed Central  Google Scholar 

  26. Jin J, Lin F, Liao S, Bao Q, Ni L. Effects of SNPs (CYP1B1* 2 G355T, CYP1B1* 3 C4326G, and CYP2E1* 5 G-1293C), smoking, and drinking on susceptibility to laryngeal cancer among Han Chinese. PLoS ONE. 2014;9(10): e106580.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trubicka J, Grabowska-Kłujszo E, Suchy J, Masojć B, Serrano-Fernandez P, Kurzawski G, et al. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility. BMC Cancer. 2010;10(1):1–6.

    Article  Google Scholar 

  28. Korytina G, Kochetova O, Akhmadishina L, Viktorova E, Victorova T. Polymorphisms of cytochrome p450 genes in three ethnic groups from Russia. Balk Med J. 2012;2012(3):252–60.

    Google Scholar 

  29. Moghadam AR, Mehramiz M, Entezari M, Aboutalebi H, Kohansal F, Dadjoo P, et al. A genetic polymorphism in the CYP1B1 gene in patients with squamous cell carcinoma of the esophagus: an Iranian Mashhad cohort study recruited over 10 years. Pharmacogenomics. 2018;19(6):539–46.

    Article  CAS  PubMed  Google Scholar 

  30. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 2007;25(33):5187–93.

    Article  CAS  PubMed  Google Scholar 

  31. Byeon J-Y, Kim Y-H, Lee C-M, Kim S-H, Chae W-K, Jung E-H, et al. CYP2D6 allele frequencies in Korean population, comparison with East Asian, Caucasian and African populations, and the comparison of metabolic activity of CYP2D6 genotypes. Arch Pharm Res. 2018;41(9):921–30.

    Article  CAS  PubMed  Google Scholar 

  32. Dorji PW, Tshering G, Na-Bangchang K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: a systematic review. J Clin Pharm Ther. 2019;44(4):508–24.

    CAS  PubMed  Google Scholar 

  33. Rodriguez-Antona C, Niemi M, Backman JT, Kajosaari L, Neuvonen PJ, Robledo M, et al. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J. 2008;8(4):268–77.

    Article  CAS  PubMed  Google Scholar 

  34. Abudahab S, Hakooz N, Tobeh N, Gogazeh E, Gharaibeh M, Al-Eitan L, et al. Variability of CYP2C8 polymorphisms in three Jordanian populations: Circassians, Chechens and Jordanian-Arabs. J Immigr Minor Health. 2022;24(12):1671–6.

    Google Scholar 

  35. Pechandova K, Buzkova H, Matouskova O, Perlik F, Slanar O. Genetic polymorphisms of CYP2C8 in the Czech Republic. Test Mol Biomark. 2012;16(7):812–6.

    Article  CAS  Google Scholar 

  36. Muthiah Y, Lee W, Teh L, Ong C, Ismail R. Genetic polymorphism of CYP2C8 in three Malaysian ethnics: CYP2C8* 2 and CYP2C8* 3 are found in Malaysian Indians. J Clin Pharm Ther. 2005;30(5):487–90.

    Article  CAS  PubMed  Google Scholar 

  37. Bosch TM, Huitema AD, Doodeman VD, Jansen R, Witteveen E, Smit WM, et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res. 2006;12(19):5786–93.

    Article  CAS  PubMed  Google Scholar 

  38. Baker S, Verweij J, Cusatis G, Van Schaik R, Marsh S, Orwick S, et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharm Ther. 2009;85(2):155–63.

    Article  CAS  Google Scholar 

  39. Wolverton SE, Wu JJ. Comprehensive dermatologic drug therapy. Elsevier Health Sciences; 2019.

    Google Scholar 

  40. Mustafina O, Tuktarova I, Karimov D, Somova RS, Nasibullin T. CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations. Russ J Genet. 2015;51(1):98–107.

    Article  CAS  Google Scholar 

  41. Verma H, Silakari O. Investigating the role of missense SNPs on ALDH 1A1 mediated pharmacokinetic resistance to cyclophosphamide. Comput Biol Med. 2020;125: 103979.

    Article  CAS  PubMed  Google Scholar 

  42. Marques SC, Ikediobi ON. The clinical application of UGT1A1pharmacogenetic testing: gene-environment interactions. Hum Genomics. 2010;4(4):1–12.

    Article  Google Scholar 

  43. Belkhir L, Seguin-Devaux C, Elens L, Pauly C, Gengler N, Schneider S, et al. Impact of UGT1A1 polymorphisms on raltegravir and its glucuronide plasma concentrations in a cohort of HIV-1 infected patients. Sci Rep. 2018;8(1):1–8.

    Article  CAS  Google Scholar 

  44. Daprà V, Alliaudi C, Galliano I, Dini M, Curcio GL, Calvi C, et al. TaqMan real time PCR for the detection of the Gilbert’s syndrome markers UGT1A1* 28; UGT1A1* 36 and UGT1A1* 37. Mol Bio Reps. 2021;48(5):4953–9.

    Article  Google Scholar 

  45. Zhang M, Wang H, Huang Y, Xu X, Liu W, Ning Q, et al. Compound heterozygous UGT1A1* 28 and UGT1A1* 6 or single homozygous UGT1A1* 28 are major genotypes associated with Gilbert’s syndrome in Chinese Han people. Gene. 2021;781: 145526.

    Article  CAS  PubMed  Google Scholar 

  46. Chen S, St Jean P, Borland J, Song I, Yeo AJ, Piscitelli S, et al. Evaluation of the effect of UGT1A1 polymorphisms on dolutegravir pharmacokinetics. Pharmacogenomics. 2014;15(1):9–16.

    Article  PubMed  Google Scholar 

  47. Liu JY, Qu K, Sferruzza AD, Bender RA. Distribution of the UGT1A1* 28 polymorphism in Caucasian and Asian populations in the US: a genomic analysis of 138 healthy individuals. Anticancer Drugs. 2007;18(6):693–6.

    Article  CAS  PubMed  Google Scholar 

  48. Morel F, Rauch C, Coles B, Le Ferrec E, Guillouzo A. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenet Genom. 2002;12(4):277–86.

    Article  CAS  Google Scholar 

  49. Al-Rubae’i S, Muftin N, Yaseen N. Polymorphism of GSTM1, GSTT1, GSTP1, and GSTA1 genes in Iraqi Population. J Phys Conf Ser. Bagdad, Iraq. 2021;1853:012005.

  50. Srivastava SK, Singhal SS, Hu X, Awasthi YC, Zimniak P, Singh SV. Differential catalytic efficiency of allelic variants of human glutathione S-transferase Pi in catalyzing the glutathione conjugation of thiotepa. Arch Biochem Biophys. 1999;366(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Ding H, Cheng Y, Li Q, Dai R, Yang X, et al. Genetic polymorphisms analysis of pharmacogenomic VIP variants in Bai ethnic group from China. Mol Genet Genomic Med. 2019;7(9): e884.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ghatak S, Yadav RP, Lalrohlui F, Chakraborty P, Ghosh S, Ghosh S, et al. Xenobiotic pathway gene polymorphisms associated with gastric cancer in high risk Mizo-Mongoloid population, Northeast India. Helicobacter. 2016;21(6):523–35.

    Article  CAS  PubMed  Google Scholar 

  53. Bakar NS. Pharmacogenetics of common SNP affecting drug metabolizing enzymes: comparison of allele frequencies between European and Malaysian/Singaporean. Drug Metab Pers Ther. 2021;36:1–9.

  54. Offer SM, Lee AM, Mattison LK, Fossum C, Wegner NJ, Diasio RB. A DPYD variant (Y186C) in individuals of African ancestry is associated with reduced DPD enzyme activity. Clin Pharmacol Ther. 2013;94(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  55. Loganayagam A, Arenas Hernandez M, Corrigan A, Fairbanks L, Lewis C, Harper P, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer. 2013;108(12):2505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seck K, Riemer S, Kates R, Ullrich T, Lutz V, Harbeck N, et al. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in a cohort of Caucasian individuals. Clin Cancer Res. 2005;11(16):5886–92.

    Article  CAS  PubMed  Google Scholar 

  57. Naushad SM, Hussain T, Alrokayan SA, Kutala VK. Pharmacogenetic profiling of dihydropyrimidine dehydrogenase (DPYD) variants in the Indian population. J Gene Med. 2021;23(1): e3289.

    Article  CAS  PubMed  Google Scholar 

  58. Narendra G, Raju B, Verma H, Sapra B, Silakari O. Multiple machine learning models combined with virtual screening and molecular docking to identify selective human ALDH1A1 inhibitors. J Mol Graph Model. 2021;107: 107950.

    Article  CAS  PubMed  Google Scholar 

  59. Verma H, Narendra G, Raju B, Kumar M, Jain SK, Tung GK, et al. 3D‐QSAR and scaffold hopping based designing of benzo [d] ox‐azol‐2 (3H)‐one and 2‐oxazolo [4, 5‐b] pyridin‐2 (3H)‐one derivatives as selective aldehyde dehydrogenase 1A1 inhibitors: synthesis and biological evaluation. Arch Pharm (Weinheim). 2022;355:e2200108.

  60. Narendra G, Raju B, Verma H, Silakari O. Identification of potential genes associated with ALDH1A1 overexpression and cyclophosphamide resistance in chronic myelogenous leukemia using network analysis. Med Oncol. 2021;38(10):1–10.

    Article  Google Scholar 

  61. Agarwal DP, Eitzen UV, Meier-Tackmann D, Goedde HW. Metabolism of cyclophosphamide by aldehyde dehydrogenases. In: Enzymology and molecular biology of carbonyl metabolism 5. Springer, Boston, MA; 1995:115–22.

  62. Parajuli B, Georgiadis TM, Fishel ML, Hurley TD. Development of selective inhibitors for human aldehyde dehydrogenase 3A1 (ALDH3A1) for the enhancement of cyclophosphamide cytotoxicity. ChemBioChem. 2014;15(5):701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ibrahim AI, Sadiq M, Frame FM, Maitland NJ, Pors K. Expression and regulation of aldehyde dehydrogenases in prostate cancer. J Cancer Metastasis Treat. 2018;4(44.10):20517.

    Google Scholar 

  64. Kozovska Z, Patsalias A, Bajzik V, Durinikova E, Demkova L, Jargasova S, et al. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer. 2018;18(1):1–11.

    Article  Google Scholar 

  65. Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. Relations between polymorphisms in drug-metabolising enzymes and toxicity of chemotherapy with cyclophosphamide, thiotepa and carboplatin. Pharmacogenet Genom. 2008;18(11):1009–15.

    Article  CAS  Google Scholar 

  66. Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics. 2008;18(6):515–23.

    Article  CAS  PubMed  Google Scholar 

  67. Spence JP, Liang T, Eriksson CP, Taylor RE, Wall TL, Ehlers CL, et al. Evaluation of aldehyde dehydrogenase 1 promoter polymorphisms identified in human populations. Alcohol Clin Exp Res. 2003;27(9):1389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao S, Sucheston LE, Zhao H, Barlow WE, Zirpoli G, Liu S, et al. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG phase III trial S0221 for breast cancer. Pharmacogenomics J. 2014;14(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  69. Rochat B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance. Clin Pharmacokinet. 2005;44(4):349–66.

    Article  CAS  PubMed  Google Scholar 

  70. Karkhanis A, Hong Y, Chan ECY. Inhibition and inactivation of human CYP2J2: implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol. 2017;135:12–21.

    Article  CAS  PubMed  Google Scholar 

  71. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenet Genomics. 2001;11(7):597–607.

    Article  CAS  Google Scholar 

  72. Wang Y, Wang M, Qi H, Pan P, Hou T, Li J, et al. Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug–drug interaction potentials. Drug Metab Dispos. 2014;42(4):782–95.

    Article  PubMed  Google Scholar 

  73. Zhou L, Chen W, Cao C, Shi Y, Ye W, Hu J, et al. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP) 1B1-mediated drug resistance via targeted CYP1B1 degradation. Eur J Med Chem. 2020;189: 112028.

    Article  CAS  PubMed  Google Scholar 

  74. McFadyen M, Melvin W, Murray G. Cytochrome P450 CYP1B1 activity in renal cell carcinoma. Br J Cancer. 2004;91(5):966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol. 1999;13(6):289–95.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang S-Y, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA. Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol Pharmacol. 2012;82(3):529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Quilez J, Guilmatre A, Garg P, Highnam G, Gymrek M, Erlich Y, et al. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans. Nucleic Acids Res. 2016;44(8):3750–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev. 2019;51(2):196–223.

    Article  CAS  PubMed  Google Scholar 

  79. Aklillu E, Øvrebø S, Botnen IV, Otter C, Ingelman-Sundberg M. Characterization of common CYP1B1 variants with different capacity for benzo [a] pyrene-7, 8-dihydrodiol epoxide formation from benzo [a] pyrene. Cancer Res. 2005;65(12):5105–11.

    Article  CAS  PubMed  Google Scholar 

  80. Baek H-S, Kwon Y-J, Ye D-J, Cho E, Kwon T-U, Chun Y-J. CYP1B1 prevents proteasome-mediated XIAP degradation by inducing PKCε activation and phosphorylation of XIAP. Biochim Biophys Acta Mol Cell Res. 2019;1866(12): 118553.

    Article  CAS  PubMed  Google Scholar 

  81. Chang I, Mitsui Y, Fukuhara S, Gill A, Wong DK, Yamamura S, et al. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget. 2015;6(10):7774.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kwon Y-J, Baek H-S, Ye D-J, Shin S, Kim D, Chun Y-J. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation. PLoS ONE. 2016;11(3): e0151598.

    Article  PubMed  PubMed Central  Google Scholar 

  83. McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI. Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol. 2001;62(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  84. Rizzo R, Spaggiari F, Indelli M, Lelli G, Baricordi OR, Rimessi P, et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat. 2010;124(2):593–8.

    Article  CAS  PubMed  Google Scholar 

  85. Sissung TM, Danesi R, Price DK, Steinberg SM, De Wit R, Zahid M, et al. Association of the CYP1B1* 3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther. 2008;7(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  86. Sasaki M, Tanaka Y, Kaneuchi M, Sakuragi N, Dahiya R. CYP1B1 gene polymorphisms have higher risk for endometrial cancer, and positive correlations with estrogen receptor α and estrogen receptor β expressions. Cancer Res. 2003;63(14):3913–8.

    CAS  PubMed  Google Scholar 

  87. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res. 2000;60(13):3440–4.

    CAS  PubMed  Google Scholar 

  88. Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM, et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis. 1999;20(8):1607–14.

    Article  CAS  PubMed  Google Scholar 

  89. Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenet Genomics. 2000;10(4):343–53.

    Article  CAS  Google Scholar 

  90. Landi MT, Bergen AW, Baccarelli A, Patterson DG Jr, Grassman J, Ter-Minassian M, et al. CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso. Italy Toxicol. 2005;207(2):191–202.

    Article  CAS  Google Scholar 

  91. Pastina I, Giovannetti E, Chioni A, Sissung TM, Crea F, Orlandini C, et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in castration-resistant prostate cancer (CRPC) patients. BMC Cancer. 2010;10(1):1–9.

    Article  Google Scholar 

  92. Salleh M, Salzihan M, Mohamad I, Bhavaraju VMK, Yahya MM, Zakaria AD, et al. Single-nucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J Genet. 2018;97(5):1185–94.

    Article  Google Scholar 

  93. Vasile E, Tibaldi C, Leon GL, D’Incecco A, Giovannetti E. Cytochrome P450 1B1 (CYP1B1) polymorphisms are associated with clinical outcome of docetaxel in non-small cell lung cancer (NSCLC) patients. J Cancer Res Clin Oncol. 2015;141(7):1189–94.

    Article  CAS  PubMed  Google Scholar 

  94. Le Morvan V, Richard E, Cadars M, Pasquies A, Lansiaux A, Robert J. Atypical relationship between cytochrome P450 1B1 (CYP1B1) polymorphism and cell proliferation and invasiveness in head-and-neck carcinoma. Cancer Res. 2016;76(14_Suppl.):2091.

    Article  Google Scholar 

  95. Aziz AAA, Salleh MSM, Yahya MM, Zakaria AD, Ankathil R. Genetic association of CYP1B1 4326 C> G polymorphism with disease-free survival in TNBC patients undergoing TAC chemotherapy regimen. Asian Pac J Cancer Prev. 2021;22(4):1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh AP, Shah PP, Mathur N, Buters JT, Pant MC, Parmar D. Genetic polymorphisms in cytochrome P4501B1 and susceptibility to head and neck cancer. Mutat Res. 2008;639(1–2):11–9.

    Article  CAS  PubMed  Google Scholar 

  97. Salinas-Sánchez AS, Donate-Moreno MJ, López-Garrido M-P, Giménez-Bachs JM, Escribano J. Role of CYP1B1 gene polymorphisms in bladder cancer susceptibility. J Urol. 2012;187(2):700–6.

    Article  PubMed  Google Scholar 

  98. Zhang H, Li L, Xu Y. CYP1B1 polymorphisms and susceptibility to prostate cancer: a meta-analysis. PLoS ONE. 2013;8(7): e68634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nishida CR, Everett S, de Montellano PRO. Specificity determinants of CYP1B1 estradiol hydroxylation. Mol Pharmacol. 2013;84(3):451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dutkiewicz Z, Mikstacka R. Structure-based drug design for cytochrome P450 family 1 inhibitors. Bioinorg Chem Appl. 2018;2018:3924608.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN. Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol. 1995;13(2):513–29.

    Article  CAS  PubMed  Google Scholar 

  102. Singh MS, Francis PA, Michael M. Tamoxifen, cytochrome P450 genes and breast cancer clinical outcomes. Breast. 2011;20(2):111–8.

    Article  PubMed  Google Scholar 

  103. Kiyotani K, Mushiroda T, Imamura CK, Hosono N, Tsunoda T, Kubo M, et al. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol. 2010;28(8):1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23(36):9312–8.

    Article  CAS  PubMed  Google Scholar 

  105. Lim H-S, Ju Lee H, Seok Lee K, Sook Lee E, Jang I-J, Ro J. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol. 2007;25(25):3837–45.

    Article  CAS  PubMed  Google Scholar 

  106. Lim JS, Chen XA, Singh O, Yap YS, Ng RC, Wong NS, et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71(5):737–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Khalaj Z, Baratieh Z, Nikpour P, Schwab M, Schaeffeler E, Mokarian F, et al. Clinical trial: CYP2D6 related dose escalation of tamoxifen in breast cancer patients with Iranian ethnic background resulted in increased concentrations of tamoxifen and its metabolites. Front Pharmacol. 2019;10:530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gaedigk A, Ndjountche L, Divakaran K, Dianne Bradford L, Zineh I, Oberlander T, et al. Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin Pharmacol Ther. 2007;81(2):242–51.

    Article  CAS  PubMed  Google Scholar 

  109. Mohamed EHM, Huei-xin L, Poh J, Toh D, Lee EJD. The importance of ethnicity definitions and pharmacogenomics in ethnobridging. Pharmacogenomics. 2013;367–404.

  110. He W, Eriksson M, Eliasson E, Grassmann F, Bäcklund M, Gabrielson M, et al. CYP2D6 genotype predicts tamoxifen discontinuation and drug response: a secondary analysis of the KARISMA trial. Ann Oncol. 2021;32(10):1286–93.

    Article  CAS  PubMed  Google Scholar 

  111. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol. 2007;21(4):419–26.

    Article  CAS  PubMed  Google Scholar 

  112. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69–76.

    Article  PubMed  Google Scholar 

  113. Malash I, Mansour O, Shaarawy S, Abdellateif MS, Omar A, Gaafar R, et al. The role of CYP2D6 polymorphisms in determining response to tamoxifen in metastatic breast cancer patients: review and Egyptian experience. Asian Pac J Cancer Prev. 2020;21(12):3619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Osborne CK, Wiebe VJ, McGuire WL, Ciocca DR, DeGregorio MW. Tamoxifen and the isomers of 4-hydroxytamoxifen in tamoxifen-resistant tumors from breast cancer patients. J Clin Oncol. 1992;10(2):304–10.

    Article  CAS  PubMed  Google Scholar 

  115. Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy andN-desmethyl metabolites and isomerization oftrans-4-hydroxytamoxifen. Drug Metab Dispos. 2002;30(8):869–74.

    Article  CAS  PubMed  Google Scholar 

  116. Widschwendter M, Siegmund KD, Müller HM, Fiegl H, Marth C, Müller-Holzner E, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004;64(11):3807–13.

    Article  CAS  PubMed  Google Scholar 

  117. Brockdorff BL, Skouv J, Reiter BE, Lykkesfeldt AE. Increased expression of cytochrome p450 1A1 and 1B1 genes in anti-estrogen-resistant human breast cancer cell lines. Int J Cancer. 2000;88(6):902–6.

    Article  CAS  PubMed  Google Scholar 

  118. Gupta N, Gupta P, Srivastava SK. Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Sci Rep. 2019;9(1):1–14.

    Article  Google Scholar 

  119. Cresteil T, Monsarrat B, Alvinerie P, Tréluyer JM, Vieira I, Wright M. Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res. 1994;54(2):386–92.

    CAS  PubMed  Google Scholar 

  120. Sparreboom A, Huizing MT, Boesen JJ, Nooijen WJ, van Tellingen O, Beijnen JH. Isolation, purification, and biological activity of mono-and dihydroxylated paclitaxel metabolites from human feces. Cancer Chemother Pharmacol. 1995;36(4):299–304.

    Article  CAS  PubMed  Google Scholar 

  121. Crommentuyn K, Schellens J, Van den Berg J, Beijnen J. In-vitro metabolism of anti-cancer drugs, methods and applications: paclitaxel, docetaxel, tamoxifen and ifosfamide. Cancer Treat Rev. 1998;24(5):345–66.

    Article  CAS  PubMed  Google Scholar 

  122. Naraharisetti SB, Lin YS, Rieder MJ, Marciante KD, Psaty BM, Thummel KE, et al. Human liver expression of CYP2C8: gender, age, and genotype effects. Drug Metab Dispos. 2010;38(6):889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kudzi W, Dodoo AN, Mills JJ. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet. 2009;10(1):1–6.

    Article  Google Scholar 

  124. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenet Genom. 2001;11(7):597–607.

    Article  CAS  Google Scholar 

  125. Jernström H, Bågeman E, Rose C, Jönsson P-E, Ingvar C. CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients. Br J Cancer. 2009;101(11):1817–23.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol. 2002;64(11):1579–89.

    Article  CAS  PubMed  Google Scholar 

  127. Yu L, Shi D, Ma L, Zhou Q, Zeng S. Influence of CYP2C8 polymorphisms on the hydroxylation metabolism of paclitaxel, repaglinide and ibuprofen enantiomers in vitro. Biopharm Drug Dispos. 2013;34(5):278–87.

    Article  PubMed  Google Scholar 

  128. Lee M-Y, Apellaniz-Ruiz M, Johansson I, Vikingsson S, Bergmann TK, Brøsen K, et al. Role of cytochrome P450 2C8* 3 (CYP2C8* 3) in paclitaxel metabolism and paclitaxel-induced neurotoxicity. Pharmacogenomics. 2015;16(9):929–37.

    Article  CAS  PubMed  Google Scholar 

  129. Aquilante CL, Niemi M, Gong L, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genom. 2013;23(12):721.

    Article  CAS  Google Scholar 

  130. Lai X-S, Yang L-P, Li X-T, Liu J-P, Zhou Z-W, Zhou S-F. Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms. Curr Drug Metab. 2009;10(9):1009–47.

    Article  CAS  PubMed  Google Scholar 

  131. Hichiya H, Tanaka-Kagawa T, Soyama A, Jinno H, Koyano S, Katori N, et al. Functional characterization of five novel CYP2C8 variants, G171S, R186X, R186G, K247R, and K383N, found in a Japanese population. Drug Metab Dispos. 2005;33(5):630–6.

    Article  CAS  PubMed  Google Scholar 

  132. Li X-Q, Björkman A, Andersson TB, Ridderström M, Masimirembwa CM. Amodiaquine clearance and its metabolism ton-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002;300(2):399–407.

    Article  CAS  PubMed  Google Scholar 

  133. Kivisto KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol. 1995;40(6):523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tian D, Hu Z. CYP3A4-mediated pharmacokinetic interactions in cancer therapy. Curr Drug Metab. 2014;15(8):808–17.

    Article  CAS  PubMed  Google Scholar 

  135. Miyoshi Y, Taguchi T, Kim SJ, Tamaki Y, Noguchi S. Prediction of response to docetaxel by immunohistochemical analysis of CYP3A4 expression in human breast cancers. Breast Cancer. 2005;12(1):11–5.

    Article  PubMed  Google Scholar 

  136. Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer. 2002;97(1):129–32.

    Article  CAS  PubMed  Google Scholar 

  137. Omran M, Badary O, Helal A, Shouman S. A prospective pharmacokinetic study of docetaxel in breast cancer patients in relation to CYP3A4 activity. Clin Pharmacol Biopharm. 2016;5:156.

  138. Kadlubar FF, Berkowitz GS, Delongchamp RR, Wang C, Green BL, Tang G, et al. The CYP3A4* 1B variant is related to the onset of puberty, a known risk factor for the development of breast cancer. Cancer Epidemiol Biomark Prev. 2003;12(4):327–31.

    CAS  Google Scholar 

  139. Zhou L-P, Yao F, Luan H, Wang Y-L, Dong X-H, Zhou W-W, et al. CYP3A4* 1B polymorphism and cancer risk: a HuGE review and meta-analysis. Tumor Biol. 2013;34(2):649–60.

    Article  CAS  Google Scholar 

  140. Klein K, Zanger UM. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the “missing heritability” problem. Front Genet. 2013;4:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Keshava C, McCanlies EC, Weston A. CYP3A4 polymorphisms: potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol. 2004;160(9):825–41.

    Article  PubMed  Google Scholar 

  142. Pinto N, Ludeman SM, Dolan ME. Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics. 2009;10(12):1897–903.

    Article  CAS  PubMed  Google Scholar 

  143. Su HI, Sammel MD, Velders L, Horn M, Stankiewicz C, Matro J, et al. Association of cyclophosphamide drug–metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil Steril. 2010;94(2):645–54.

    Article  CAS  PubMed  Google Scholar 

  144. Gor PP, Su HI, Gray RJ, Gimotty PA, Horn M, Aplenc R, et al. Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res. 2010;12(3):1–10.

    Article  Google Scholar 

  145. Timm R, Kaiser R, Lötsch J, Heider U, Sezer O, Weisz K, et al. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J. 2005;5(6):365–73.

    Article  CAS  PubMed  Google Scholar 

  146. Shatalova EG, Walther SE, Favorova OO, Rebbeck TR, Blanchard RL. Genetic polymorphisms in human SULT1A1 and UGT1A1 genes associate with breast tumor characteristics: a case-series study. Breast Cancer Res. 2005;7(6):1–13.

    Article  Google Scholar 

  147. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11): role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. Eur J Clin Invest. 1998;101(4):847–54.

    Article  CAS  Google Scholar 

  148. Fuchs C, Mitchell EP, Hoff PM. Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev. 2006;32(7):491–503.

    Article  CAS  PubMed  Google Scholar 

  149. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. Int J Clin. 2009;27(16):2604.

    CAS  Google Scholar 

  150. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11): role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest. 1998;101(4):847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Palomaki GE, Bradley LA, Douglas MP, Kolor K, Dotson WD. Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet Med. 2009;11(1):21–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hirasawa A, Zama T, Akahane T, Nomura H, Kataoka F, Saito K, et al. Polymorphisms in the UGT1A1 gene predict adverse effects of irinotecan in the treatment of gynecologic cancer in Japanese patients. J Hum Genet. 2013;58(12):794–8.

    Article  CAS  PubMed  Google Scholar 

  153. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL. UGT1A1* 28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst. 2007;99(17):1290–5.

    Article  CAS  PubMed  Google Scholar 

  154. Ichikawa W, Araki K, Fujita K-I, Yamamoto W, Endo H, Nagashima F, et al. UGT1A1* 28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst. 2008;100(3):224–5.

    Article  PubMed  Google Scholar 

  155. Hu Z-Y, Yu Q, Pei Q, Guo C. Dose-dependent association between UGT1A1* 28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res. 2010;16(15):3832–42.

    Article  CAS  PubMed  Google Scholar 

  156. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci U S A. 1998;95(14):8170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huangfu H, Pan H, Wang B, Wen S, Han R, Li L. Association between UGT1A1 polymorphism and risk of laryngeal squamous cell carcinoma. Int J Environ Res Public Health. 2016;13(1):112.

    Article  PubMed Central  Google Scholar 

  158. Low S-K, Kiyotani K, Mushiroda T, Daigo Y, Nakamura Y, Zembutsu H. Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. J Hum Genet. 2009;54(10):564–71.

    Article  CAS  PubMed  Google Scholar 

  159. Morrow CS, Smitherman PK, Diah SK, Schneider E, Townsend AJ. Coordinated action of glutathione S-transferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification: mechanism of GST A1-1-and MRP1-associated resistance to chlorambucil in MCF7 breast carcinoma cells. J Biol Chem. 1998;273(32):20114–20.

    Article  CAS  PubMed  Google Scholar 

  160. Xu S, Hou D, Liu J, Ji L. Age-associated changes in GSH S-transferase gene/proteins in livers of rats. Redox Rep. 2018;23(1):213–8.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Karpusas M, Axarli I, Chiniadis L, Papakyriakou A, Bethanis K, Scopelitou K, et al. The interaction of the chemotherapeutic drug chlorambucil with human glutathione transferase A1–1: kinetic and structural analysis. PLoS ONE. 2013;8(2): e56337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McIlwain C, Townsend D, Tew K. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene. 2006;25(11):1639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ansari M, Lauzon-Joset J, Vachon M, Duval M, Theoret Y, Champagne M, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  164. Ansari M, Curtis PH-D, Uppugunduri CRS, Rezgui MA, Nava T, Mlakar V, et al. GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation: a multicenter study. Oncotarget. 2017;8(53):90852.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ansari M, Rezgui M, Theoret Y, Uppugunduri C, Mezziani S, Vachon M, et al. Glutathione S-transferase gene variations influence BU pharmacokinetics and outcome of hematopoietic SCT in pediatric patients. Bone Marrow Transplant. 2013;48(7):939–46.

    Article  CAS  PubMed  Google Scholar 

  166. Rossi D, Rasi S, Franceschetti S, Capello D, Castelli A, De Paoli L, et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia. 2009;23(6):1118–26.

    Article  CAS  PubMed  Google Scholar 

  167. Michaud V, Tran M, Pronovost B, Bouchard P, Bilodeau S, Alain K, et al. Impact of GSTA1 polymorphisms on busulfan oral clearance in adult patients undergoing hematopoietic stem cell transplantation. Pharmaceutics. 2019;11(9):440.

    Article  CAS  PubMed Central  Google Scholar 

  168. Santric V, Djokic M, Suvakov S, Pljesa-Ercegovac M, Nikitovic M, Radic T, et al. GSTP1 rs1138272 polymorphism affects prostate cancer risk. Medicina. 2020;56(3):128.

    Article  PubMed Central  Google Scholar 

  169. Ishimoto TM, Ali-Osman F. Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenet Genom. 2002;12(7):543–53.

    Article  CAS  Google Scholar 

  170. Lecomte T, Landi B, Beaune P, Laurent-Puig P, Loriot M-A. Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin Cancer Res. 2006;12(10):3050–6.

    Article  CAS  PubMed  Google Scholar 

  171. Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD. Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol. 2007;25(6):708–14.

    Article  CAS  PubMed  Google Scholar 

  172. Peng Z, Wang Q, Gao J, Ji Z, Yuan J, Tian Y, et al. Association between GSTP1 Ile105Val polymorphism and oxaliplatin-induced neuropathy: a systematic review and meta-analysis. Cancer Chemother Pharmacol. 2013;72(2):305–14.

    Article  CAS  PubMed  Google Scholar 

  173. Khrunin A, Moisseev A, Gorbunova V, Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 2010;10(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  174. Townsend DM, Tew KD, He L, King JB, Hanigan MH. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed Pharmacother. 2009;63(2):79–85.

    Article  CAS  PubMed  Google Scholar 

  175. Miura K, Kinouchi M, Ishida K, Fujibuchi W, Naitoh T, Ogawa H, et al. 5-FU metabolism in cancer and orally-administrable 5-fu drugs. Cancers. 2010;2(3):1717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Isshi K, Sakuyama T, Gen T, Nakamura Y, Kuroda T, Katuyama T, et al. Predicting 5-FU sensitivity using human colorectal cancer specimens: comparison of tumor dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activities with in vitro chemosensitivity to 5-FU. Int J Clin Oncol. 2002;7(6):335–42.

    Article  CAS  PubMed  Google Scholar 

  177. Oguri T, Achiwa H, Bessho Y, Muramatsu H, Maeda H, Niimi T, et al. The role of thymidylate synthase and dihydropyrimidine dehydrogenase in resistance to 5-fluorouracil in human lung cancer cells. Lung Cancer. 2005;49(3):345–51.

    Article  PubMed  Google Scholar 

  178. Takabayashi A, Iwata S, Kawai Y, Kanai M, Taki Y, Takechi T, et al. Dihydropyrimidine dehydrogenase activity and mRNA expression in advanced gastric cancer analyzed in relation to effectiveness of preoperative 5-fluorouracil-based chemotherapy. Int J Oncol. 2000;17(5):889–984.

    CAS  PubMed  Google Scholar 

  179. Zhang C, Liu H, Ma B, Song Y, Gao P, Xu Y, et al. The impact of the expression level of intratumoral dihydropyrimidine dehydrogenase on chemotherapy sensitivity and survival of patients in gastric cancer: a meta-analysis. Dis Mark. 2017;2017:9202676.

  180. Del Re M, Cinieri S, Michelucci A, Salvadori S, Loupakis F, Schirripa M, et al. DPYD* 6 plays an important role in fluoropyrimidine toxicity in addition to DPYD* 2A and c. 2846A> T: a comprehensive analysis in 1254 patients. Pharmacogenomics J. 2019;19(6):556–63.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li Q, Liu Y, Zhang H-M, Huang Y-P, Wang T-Y, Li D-S, et al. Influence of DPYD genetic polymorphisms on 5-fluorouracil toxicities in patients with colorectal cancer: a meta-analysis. Gastroenterol Res Pract. 2014;2014:1–11.

  182. Kindler HL, Schilsky RL. Eniluracil: an irreversible inhibitor of dihydropyrimidine dehydrogenase. Expert Opin Investig Drugs. 2000;9(7):1635–49.

    Article  CAS  PubMed  Google Scholar 

  183. Offer SM, Fossum CC, Wegner NJ, Stuflesser AJ, Butterfield GL, Diasio RB. Comparative functional analysis of DPYD variants of potential clinical relevance to dihydropyrimidine dehydrogenase activity screening of DPYD variants for altered 5-FU catabolism. Cancer Res. 2014;74(9):2545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Henricks LM, Siemerink EJ, Rosing H, Meijer J, Goorden SM, Polstra AM, et al. Capecitabine-based treatment of a patient with a novel DPYD genotype and complete dihydropyrimidine dehydrogenase deficiency. Int J Cancer. 2018;142(2):424–30.

    Article  CAS  PubMed  Google Scholar 

  185. Pratt V, Scott S. Personalized medicine in cancer treatment. Diagnostic molecular pathology. Elsevier; 2017. p. 503–13.

    Google Scholar 

  186. Henricks LM, Lunenburg CA, de Man FM, Meulendijks D, Frederix GW, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459–67.

    Article  CAS  PubMed  Google Scholar 

  187. Shimada S, Sano D, Hyakusoku H, Hatano T, Takahashi H, Isono Y, et al. Dihydropyrimidine dehydrogenase overexpression correlates with potential resistance to 5-fluorouracil-based treatment in head and neck squamous cell carcinoma. Transl Cancer Res. 2018;7(2):411–9.

    Article  CAS  Google Scholar 

  188. Tai H-L, Fessing MY, Bonten EJ, Yanishevsky Y, d’Azzo A, Krynetski EY, et al. Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT* 2, TPMT* 3A, TPMT* 3B or TPMT* 3C. Pharmacogenetics. 1999;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  189. Loennechen T, Yates CR, Fessing MY, Relling MV, Krynetski EY, Evans WE. Isolation of a human thiopurine S-methyltransferase (TPMT) complementary DNA with a single nucleotide transition A719G (TPMT* 3C) and its association with loss of TPMT protein and catalytic activity in humans. Clin Pharm Ther. 1998;64(1):46–51.

    Article  CAS  Google Scholar 

  190. Otterness D, Szumlanski C, Lennard L, Klemetsdal B, Aarbakke J, Park-Hah JO, et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther. 1997;62(1):60–73.

    Article  CAS  PubMed  Google Scholar 

  191. Otterness DM, Szumlanski CL, Wood TC, Weinshilboum RM. Human thiopurine methyltransferase pharmacogenetics: kindred with a terminal exon splice junction mutation that results in loss of activity. J Clin Investig. 1998;101(5):1036–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Spire-Vayron de la Moureyre C, Debuysère H, Sabbagh N, Marez D, Vinner E, Chevalier ED, et al. Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Hum Mutat. 1998;12(3):177–85.

    Article  CAS  PubMed  Google Scholar 

  193. Hon YY, Fessing MY, Pui C-H, Relling MV, Krynetski EY, Evans WE. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet. 1999;8(2):371–6.

    Article  CAS  PubMed  Google Scholar 

  194. Ohta T, Hori H, Ogawa M, Miyahara M, Kawasaki H, Taniguchi N, et al. Impact of cytidine deaminase activity on intrinsic resistance to cytarabine in carcinoma cells. Oncol Rep. 2004;12(5):1115–20.

    CAS  PubMed  Google Scholar 

  195. Kirch H, Schröder J, Hoppe H, Esche H, Seeber S, Schütte J. Recombinant gene products of two natural variants of the human cytidine deaminase gene confer different deamination rates of cytarabine in vitro. Exp Hematol. 1998;26(5):421–5.

    CAS  PubMed  Google Scholar 

  196. Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED, et al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res. 2006;12(6):1794–803.

    Article  CAS  PubMed  Google Scholar 

  197. Giovannetti E, Laan A, Vasile E, Tibaldi C, Nannizzi S, Ricciardi S, et al. Correlation between cytidine deaminase genotype and gemcitabine deamination in blood samples. Nucleosides Nucleotides Nucleic Acids. 2008;27(6–7):720–5.

    Article  CAS  PubMed  Google Scholar 

  198. Ludovini V, Floriani I, Pistola L, Minotti V, Meacci M, Chiari R, et al. Association of cytidine deaminase and xeroderma pigmentosum group D polymorphisms with response, toxicity, and survival in cisplatin/gemcitabine-treated advanced non-small cell lung cancer patients. J Thorac Oncol. 2011;6(12):2018–26.

    Article  PubMed  Google Scholar 

  199. Tibaldi C, Giovannetti E, Vasile E, Mey V, Laan AC, Nannizzi S, et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2008;14(6):1797–803.

    Article  CAS  PubMed  Google Scholar 

  200. Micozzi D, Carpi FM, Pucciarelli S, Polzonetti V, Polidori P, Vilar S, et al. Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol. 2014;63:64–74.

    Article  CAS  PubMed  Google Scholar 

  201. Yue L, Saikawa Y, Ota K, Tanaka M, Nishimura R, Uehara T, et al. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenet Genom. 2003;13(1):29–38.

    Article  CAS  Google Scholar 

  202. Sugiyama E, Lee S-J, Lee SS, Kim W-Y, Kim S-R, Tohkin M, et al. Ethnic differences of two non-synonymous single nucleotide polymorphisms in CDA gene. Drug Metab Pharmacok. 2009;24(6):553–6.

    Article  CAS  Google Scholar 

  203. Fukunaga A, Marsh S, Murry D, Hurley T, McLeod H. Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway. Pharmacogenomics J. 2004;4(5):307–14.

    Article  CAS  PubMed  Google Scholar 

  204. Ciccolini J, Evrard A, Lacarelle B. A CDD polymorphism as predictor of capecitabine-induced hand-foot syndrome. Clin Cancer Res. 2012;18(1):317.

    Article  CAS  PubMed  Google Scholar 

  205. Abraham A, Varatharajan S, Abbas S, Zhang W, Shaji RV, Ahmed R, et al. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics. 2012;13(3):269–82.

    Article  CAS  PubMed  Google Scholar 

  206. Cohen R, Preta L, Joste V, Curis E, Huillard O, Jouinot A, et al. Determinants of the interindividual variability in serum cytidine deaminase activity of patients with solid tumours. Br J Clin Pharmacol. 2019;85(6):1227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Caronia D, Martin M, Sastre J, De La Torre J, García-Sáenz JA, Alonso MR, et al. A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome: a CDD polymorphism as predictor of capecitabine-induced hand-foot syndrome. Clin Cancer Res. 2011;17(7):2006–13.

    Article  CAS  PubMed  Google Scholar 

  208. Dahan L, Ciccolini J, Evrard A, Mbatchi L, Tibbitts J, Ries P, et al. Sudden death related to toxicity in a patient on capecitabine and irinotecan plus bevacizumab intake: pharmacogenetic implications. J Clin Oncol. 2012;30(4):e41–4.

    Article  CAS  PubMed  Google Scholar 

  209. Swart M, Whitehorn H, Ren Y, Smith P, Ramesar RS, Dandara C. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med Genet. 2012;13(1):1–12.

    Article  Google Scholar 

  210. Tirona RG, Lee W, Leake BF, Lan L-B, Cline CB, Lamba V, et al. The orphan nuclear receptor HNF4α determines PXR-and CAR-mediated xenobiotic induction of CYP3A4. Nat Med. 2003;9(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  211. Bertilsson G, Heidrich J, Svensson K, Åsman M, Jendeberg L, Sydow-Bäckman M, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP 3 A induction. Proc Natl Acad Sci U S A. 1998;95(21):12208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Raynal C, Pascussi J-M, Leguelinel G, Breuker C, Kantar J, Lallemant B, et al. Pregnane× receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol Cancer. 2010;9(1):1–13.

    Article  Google Scholar 

  213. Mbatchi LC, Brouillet J-P, Evrard A. Genetic variations of the xenoreceptors NR1I2 and NR1I3 and their effect on drug disposition and response variability. Pharmacogenomics. 2018;19(1):61–77.

    Article  CAS  PubMed  Google Scholar 

  214. Mbatchi LC, Robert J, Ychou M, Boyer J-C, Del Rio M, Gassiot M, et al. Effect of single nucleotide polymorphisms in the xenobiotic-sensing receptors NR1I2 and NR1I3 on the pharmacokinetics and toxicity of irinotecan in colorectal cancer patients. Clin Pharmacokinet. 2016;55(9):1145–57.

    Article  CAS  PubMed  Google Scholar 

  215. Zimmerman EI, Roberts JL, Li L, Finkelstein D, Gibson A, Chaudhry AS, et al. Ontogeny and sorafenib metabolism. Clin Cancer Res. 2012;18(20):5788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ba Hl, Mbatchi L, Gattacceca F, Evrard A, Lacarelle B, Blanchet B, et al. Pharmacogenetics and pharmacokinetics modeling of unexpected and extremely severe toxicities after sorafenib intake. Pharmacogenomics. 2020;21(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  217. Medhasi S, Pinthong D, Pasomsub E, Vanwong N, Ngamsamut N, Puangpetch A, et al. Pharmacogenomic study reveals new variants of drug metabolizing enzyme and transporter genes associated with steady-state plasma concentrations of risperidone and 9-hydroxyrisperidone in Thai autism spectrum disorder patients. Front Pharmacol. 2016;7:475.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ahmed S, Zhou Z, Zhou J, Chen S-Q. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genom Proteom Bioinform. 2016;14(5):298–313.

    Article  Google Scholar 

  219. Calvo E, Walko C, Dees EC, Valenzuela B. Pharmacogenomics, pharmacokinetics, and pharmacodynamics in the era of targeted therapies. Am Soc Clin Oncol Educ Book. 2016;36:e175–84.

    Article  Google Scholar 

  220. Quiñones LA, Lee KS. Improving cancer chemotherapy through pharmacogenomics: a research topic. Front Genet. 2015;6:195.

    PubMed  PubMed Central  Google Scholar 

  221. Mukerjee G, Huston A, Kabakchiev B, Piquette-Miller M, van Schaik R, Dorfman R. User considerations in assessing pharmacogenomic tests and their clinical support tools. NPJ Genom Med. 2018;3(1):1–9.

    Article  CAS  Google Scholar 

  222. Cattaneo D, Perico N, Remuzzi G. From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am J Transplant. 2004;4(3):299–310.

    Article  CAS  PubMed  Google Scholar 

  223. Lauschke VM, Ingelman-Sundberg M. Emerging strategies to bridge the gap between pharmacogenomic research and its clinical implementation. NPJ Genom Med. 2020;5(1):1–7.

    Article  Google Scholar 

Download references

Acknowledgments

Gera Narendra and Baddipadige Raju acknowledge the Indian Council of Medical Research, New Delhi for providing a Senior Research Fellowship; Sanction No. ISRM/12(10)/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Silakari.

Ethics declarations

Funding

This work was supported by the Indian Council of Medical Research, New Delhi, grant number ISRM/12(10)/2019.

Conflicts of interest/Competing interests

The authors have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ contributions

GN: conceptualization and writing of the original manuscript, SC: manuscript editing, BR: editing and corrections, HV: manuscript editing, OS: supervision.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendra, G., Choudhary, S., Raju, B. et al. Role of Genetic Polymorphisms in Drug-Metabolizing Enzyme-Mediated Toxicity and Pharmacokinetic Resistance to Anti-Cancer Agents: A Review on the Pharmacogenomics Aspect. Clin Pharmacokinet 61, 1495–1517 (2022). https://doi.org/10.1007/s40262-022-01174-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01174-7

Navigation