Review of the Pharmacokinetics and Pharmacodynamics of Intravenous Busulfan in Paediatric Patients

Abstract

We aimed to review the pharmacokinetics (PK) of intravenous busulfan in paediatric patients, identify covariate factors influencing exposure, investigate evidence of changes in PK behaviour over time, and correlate exposure with efficacy and toxicity outcomes. A literature review was undertaken of original research published between 2007 and 2019, investigating the PK and pharmacodynamics (PD) of intravenous busulfan in patients ≤ 18 years of age. The review identified 41 publications characterising the PK, and 45 publications describing the PD, of busulfan. Median typical clearance (CL) was 0.22 L/h/kg and median typical volume of distribution was 0.69 L/kg. Patient weight, age, glutathione-S-transferase A1 (GSTA1) genotype and busulfan dosing day/time were the most commonly identified factors affecting CL. Of nine studies investigating changes in CL, seven reported reduced CL over the 4-day course of treatment. Exposure monitoring methods and therapeutic targets were heterogeneous across studies. Relationships between busulfan exposure and patient outcomes were observed in five studies. One study observed a cumulative area under the concentration-time curve over all days of treatment of between 78 and 101 mg/L·h, and two studies observed an average concentration at first dose of < 600 ng/mL improved overall survival, transplant-related mortality, or relapse. One study observed increased sinusoidal obstructive syndrome with maximum busulfan concentration > 1.88 ng/mL. Patient weight, age and GSTA1 genotype are important covariates to consider when individualising busulfan therapy. Reduced busulfan CL over time may need to be accounted for, particularly in patients not receiving phenytoin co-therapy. Standardised monitoring of busulfan exposure over the entire course of treatment and further investigation of the role of busulfan metabolites and pharmacogenomics is warranted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Duarte RF, Labopin M, Bader P, Basak GW, Bonini C, Chabannon C, et al. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant. 2019;54(10):1525–52. https://doi.org/10.1038/s41409-019-0516-2.

    Article  PubMed  Google Scholar 

  2. 2.

    Otsuka America Pharmaceutical Inc. Busulfex (busulfan) for injection. Silver Spring: US FDA; 2015.

    Google Scholar 

  3. 3.

    Pierre Fabre Medicament. Busilvex: EPAR—product information. Amsterdam: European Medicines Agency; 2017. p. 1–40.

    Google Scholar 

  4. 4.

    Bartelink IH, van Reij EML, Gerhardt CE, van Maarseveen EM, de Wildt A, Versluys B, et al. Fludarabine and exposure-targeted busulfan compares favorably with busulfan/cyclophosphamide-based regimens in pediatric hematopoietic cell transplantation: maintaining efficacy with less toxicity. Biol Blood Marrow Transplant. 2014;20(3):345–53. https://doi.org/10.1016/j.bbmt.2013.11.027.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hong KT, Kang HJ, Choi JY, Hong CR, Cheon J-E, Park JD, et al. Favorable outcome of post-transplantation cyclophosphamide haploidentical peripheral blood stem cell transplantation with targeted busulfan-based myeloablative conditioning using intensive pharmacokinetic monitoring in pediatric patients. Biol Blood Marrow Transplant. 2018;24(11):2239–44. https://doi.org/10.1016/j.bbmt.2018.06.034.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kim B, Lee JW, Hong KT, Yu KS, Jang IJ, Park KD, et al. Pharmacometabolomics for predicting variable busulfan exposure in paediatric haematopoietic stem cell transplantation patients. Sci Rep. 2017a;7(1):1711. https://doi.org/10.1038/s41598-017-01861-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lee JW, Kang HJ, Kim S, Lee SH, Yu K-S, Kim NH, et al. Favorable outcome of hematopoietic stem cell transplantation using a targeted once-daily intravenous busulfan-fludarabine-etoposide regimen in pediatric and infant acute lymphoblastic leukemia patients. Biol Blood Marrow Transplant. 2015;21(1):190–5. https://doi.org/10.1016/j.bbmt.2014.09.013.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Nava T, Kassir N, Rezgui MA, Uppugunduri CRS, Huezo-Diaz Curtis P, Duval M, et al. Incorporation of GSTA1 genetic variations into a population pharmacokinetic model for IV busulfan in paediatric hematopoietic stem cell transplantation. Br J Clin Pharmacol. 2018;84(7):1494–504. https://doi.org/10.1111/bcp.13566.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Rhee SJ, Lee JW, Yu KS, Hong KT, Choi JY, Hong CR, et al. Pediatric patients undergoing hematopoietic stem cell transplantation can greatly benefit from a novel once-daily intravenous busulfan dosing nomogram. Am J Hematol. 2017;92(7):607–13. https://doi.org/10.1002/ajh.24734.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hassan M, Andersson BS. Role of pharmacogenetics in busulfan/cyclophosphamide conditioning therapy prior to hematopoietic stem cell transplantation. Pharmacogenomics. 2013;14(1):75–87. https://doi.org/10.2217/pgs.12.185.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Huezo-Diaz P, Uppugunduri CRS, Tyagi AK, Krajinovic M, Ansari M. Pharmacogenetic aspects of drug metabolizing enzymes in busulfan based conditioning prior to allogenic hematopoietic stem cell transplantation in children. Curr Drug Metab. 2014;15(3):251–64. https://doi.org/10.2174/1389200215666140202214012.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    El-Serafi I, Terelius Y, Abedi-Valugerdi M, Naughton S, Saghafian M, Moshfegh A, et al. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway. PLoS ONE. 2017;12(11):e0187294. https://doi.org/10.1371/journal.pone.0187294.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Younis IR, Elliott M, Peer CJ, Cooper AJL, Pinto JT, Konat GW, et al. Dehydroalanine analog of glutathione: an electrophilic busulfan metabolite that binds to human glutathione S-transferase A1–1. J Pharmacol Exp Ther. 2008;327(3):770–6. https://doi.org/10.1124/jpet.108.142208.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Scian M, Atkins WM. Supporting data for characterization of the busulfan metabolite EdAG and the Glutaredoxins that it adducts. Data Brief. 2015a;5:161–70. https://doi.org/10.1016/j.dib.2015.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Scian M, Atkins WM. The busulfan metabolite EdAG irreversibly glutathionylates glutaredoxins. Arch Biochem Biophys. 2015b;583:96–104. https://doi.org/10.1016/j.abb.2015.08.005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Scian M, Guttman M, Bouldin SD, Outten CE, Atkins WM. The myeloablative drug busulfan converts cysteine to dehydroalanine and lanthionine in redoxins. Biochemistry. 2016;55(33):4720–30. https://doi.org/10.1021/acs.biochem.6b00622.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    DeLeve LD, Wang XD. Role of oxidative stress and glutathione in busulfan toxicity in cultured murine hepatocytes. Pharmacology. 2000;60(3):143–54. https://doi.org/10.1159/000028359.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hassan M, Oberg G, Ehrsson H, Ehrnebo M, Wallin I, Smedmyr B, et al. Pharmacokinetic and metabolic studies of high-dose busulphan in adults. Eur J Clin Pharmacol. 1989;36(5):525–30. https://doi.org/10.1007/bf00558081.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hassan M, Ehrsson H, Smedmyr B, Totterman T, Wallin I, Oberg G, et al. Cerebrospinal fluid and plasma concentrations of busulfan during high-dose therapy. Bone Marrow Transplant. 1989;4(1):113–4.

    CAS  PubMed  Google Scholar 

  20. 20.

    Long-Boyle JR, Savic R, Yan S, Bartelink I, Musick L, French D, et al. Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use. Ther Drug Monit. 2015;37(2):236–45. https://doi.org/10.1097/ftd.0000000000000131.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bartelink IH, Boelens JJ, Bredius RG, Egberts AC, Wang C, Bierings MB, et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet. 2012;51(5):331–45. https://doi.org/10.2165/11598180-000000000-00000.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Savic RM, Cowan MJ, Dvorak CC, Pai SY, Pereira L, Bartelink IH, et al. Effect of weight and maturation on busulfan clearance in infants and small children undergoing hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19(11):1608–14. https://doi.org/10.1016/j.bbmt.2013.08.014.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Langenhorst JB, Dorlo TPC, van Maarseveen EM, Nierkens S, Kuball J, Boelens JJ, et al. Population pharmacokinetics of fludarabine in children and adults during conditioning prior to allogeneic hematopoietic cell transplantation. Clin Pharmacokinet. 2019;58(5):627–37. https://doi.org/10.1007/s40262-018-0715-9.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bartelink IH, Lalmohamed A, van Reij EM, Dvorak CC, Savic RM, Zwaveling J, et al. Association of busulfan exposure with survival and toxicity after haemopoietic cell transplantation in children and young adults: a multicentre, retrospective cohort analysis. Lancet Haematol. 2016;3(11):e526–36. https://doi.org/10.1016/s2352-3026(16)30114-4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hamidieh AA, Alimoghaddam K, Jahani M, Bahar B, Mousavi SA, Iravani M, et al. Non-TBI hematopoietic stem cell transplantation in pediatric AML patients: a single-center experience. J Pediatr Hematol Oncol. 2013;35(6):e239–45. https://doi.org/10.1097/MPH.0b013e31827080fc.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hamidieh AA, Monzavi SM, Kaboutari M, Behfar M, Esfandbod M. Outcome analysis of pediatric patients with acute lymphoblastic leukemia treated with total body irradiation-free allogeneic hematopoietic stem cell transplantation: comparison of patients with and without central nervous system involvement. Biol Blood Marrow Transplant. 2017;23(12):2110–7. https://doi.org/10.1016/j.bbmt.2017.08.036.

    Article  PubMed  Google Scholar 

  27. 27.

    Malar R, Sjoo F, Rentsch K, Hassan M, Gungor T. Therapeutic drug monitoring is essential for intravenous busulfan therapy in pediatric hematopoietic stem cell recipients. Pediatr Transplant. 2011;15(6):580–8. https://doi.org/10.1111/j.1399-3046.2011.01529.x.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Philippe M, Goutelle S, Guitton J, Fonrose X, Bergeron C, Girard P, et al. Should busulfan therapeutic range be narrowed in pediatrics? Experience from a large cohort of hematopoietic stem cell transplant children. Bone Marrow Transplant. 2016;51(1):72–8. https://doi.org/10.1038/bmt.2015.218.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Andersson BS, Thall PF, Valdez BC, Milton DR, Al-Atrash G, Chen J, et al. Fludarabine with pharmacokinetically guided IV busulfan is superior to fixed-dose delivery in pretransplant conditioning of AML/MDS patients. Bone Marrow Transplant. 2017;52(4):580–7. https://doi.org/10.1038/bmt.2016.322.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bartelink IH, Bredius RG, Ververs TT, Raphael MF, van Kesteren C, Bierings M, et al. Once-daily intravenous busulfan with therapeutic drug monitoring compared to conventional oral busulfan improves survival and engraftment in children undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2008;14(1):88–98. https://doi.org/10.1016/j.bbmt.2007.09.015.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Vassal G, Michel G, Esperou H, Gentet JC, Valteau-Couanet D, Doz F, et al. Prospective validation of a novel IV busulfan fixed dosing for paediatric patients to improve therapeutic AUC targeting without drug monitoring. Cancer Chemother Pharmacol. 2008;61(1):113–23. https://doi.org/10.1007/s00280-007-0455-2.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–56. https://doi.org/10.1002/cpt.659.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hoy SM, Lyseng-Williamson KA. Intravenous busulfan: in the conditioning treatment of pediatric patients prior to hematopoietic stem cell transplantation. Paediatr Drugs. 2007;9(4):271–8.

    Article  Google Scholar 

  34. 34.

    Ward J, Kletzel M, Duerst R, Fuleihan R, Chaudhury S, Schneiderman J, et al. Single daily busulfan dosing for infants with nonmalignant diseases undergoing reduced-intensity conditioning for allogeneic hematopoietic progenitor cell transplantation. Biol Blood Marrow Transplant. 2015;21(9):1612–21. https://doi.org/10.1016/j.bbmt.2015.05.017.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Browning B, Thormann K, Donaldson A, Halverson T, Shinkle M, Kletzel M. Busulfan dosing in children with BMIs ≥85% undergoing HSCT: a new optimal strategy. Biol Blood Marrow Transplant. 2011;17(9):1383–8. https://doi.org/10.1016/j.bbmt.2011.01.013.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Tse WT, Duerst R, Schneiderman J, Chaudhury S, Jacobsohn D, Kletzel M. Age-dependent pharmacokinetic profile of single daily dose i.v. busulfan in children undergoing reduced-intensity conditioning stem cell transplant. Bone Marrow Transplant. 2009;44(3):145–56. https://doi.org/10.1038/bmt.2008.437.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Zwaveling J, Press RR, Bredius RG, van Derstraaten TR, den Hartigh J, Bartelink IH, et al. Glutathione S-transferase polymorphisms are not associated with population pharmacokinetic parameters of busulfan in pediatric patients. Ther Drug Monit. 2008;30(4):504–10. https://doi.org/10.1097/FTD.0b013e3181817428.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NH. Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and Bayesian dose personalization. Clin Cancer Res. 2014;20(3):754–63. https://doi.org/10.1158/1078-0432.Ccr-13-1960.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Nguyen L. Integration of modelling and simulation into the development of intravenous busulfan in paediatrics: an industrial experience. Fundam Clin Pharmacol. 2008;22(6):599–604. https://doi.org/10.1111/j.1472-8206.2008.00651.x.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Paci A, Vassal G, Moshous D, Dalle JH, Bleyzac N, Neven B, et al. Pharmacokinetic behavior and appraisal of intravenous busulfan dosing in infants and older children: the results of a population pharmacokinetic study from a large pediatric cohort undergoing hematopoietic stem-cell transplantation. Ther Drug Monit. 2012a;34(2):198–208. https://doi.org/10.1097/FTD.0b013e31824c2f60.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Diestelhorst C, Boos J, McCune JS, Hempel G. Population pharmacokinetics of intravenous busulfan in children: revised body weight-dependent NONMEM(R) model to optimize dosing. Eur J Clin Pharmacol. 2014;70(7):839–47. https://doi.org/10.1007/s00228-014-1692-z.

    Article  PubMed  Google Scholar 

  42. 42.

    Neely M, Philippe M, Rushing T, Fu X, van Guilder M, Bayard D, et al. Accurately achieving target busulfan exposure in children and adolescents with very limited sampling and the BestDose software. Ther Drug Monit. 2016;38(3):332–42. https://doi.org/10.1097/ftd.0000000000000276.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Schechter T, Finkelstein Y, Doyle J, Verjee Z, Moretti M, Koren G, et al. Pharmacokinetic disposition and clinical outcomes in infants and children receiving intravenous busulfan for allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2007;13(3):307–14. https://doi.org/10.1016/j.bbmt.2006.10.026.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Kim B, Lee JW, Hong KT, Yu K-S, Jang I-J, Park KD, et al. Pharmacometabolomics for predicting variable busulfan exposure in paediatric haematopoietic stem cell transplantation patients. Sci Rep. 2017b;7(1):1711. https://doi.org/10.1038/s41598-017-01861-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Gaziev J, Nguyen L, Puozzo C, Mozzi AF, Casella M, Perrone Donnorso M, et al. Novel pharmacokinetic behavior of intravenous busulfan in children with thalassemia undergoing hematopoietic stem cell transplantation: a prospective evaluation of pharmacokinetic and pharmacodynamic profile with therapeutic drug monitoring. Blood. 2010;115(22):4597–604. https://doi.org/10.1182/blood-2010-01-265405.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Ishiwata Y, Nagata M, Tsuge K, Takahashi H, Suzuki S, Imai K, et al. Population pharmacokinetics of intravenous busulfan in Japanese pediatric patients with primary immunodeficiency diseases. J Clin Pharmacol. 2018;58(3):327–31. https://doi.org/10.1002/jcph.1027.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    van Hoogdalem MW, Emoto C, Fukuda T, Mizuno T, Mehta PA, Vinks AA. Population pharmacokinetic modelling of busulfan and the influence of body composition in paediatric Fanconi anaemia patients. Br J Clin Pharmacol. 2020;86(5):933–43. https://doi.org/10.1111/bcp.14202.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Johnson L, Orchard PJ, Baker KS, Brundage R, Cao Q, Wang X, et al. Glutathione S-transferase A1 genetic variants reduce busulfan clearance in children undergoing hematopoietic cell transplantation. J Clin Pharmacol. 2008;48(9):1052–62. https://doi.org/10.1177/0091270008321940.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ansari M, Curtis PH, Uppugunduri CRS, Rezgui MA, Nava T, Mlakar V, et al. GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation: a multicenter study. Oncotarget. 2017;8(53):90852–67. https://doi.org/10.18632/oncotarget.20310.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ten Brink MH, Swen JJ, Bohringer S, Wessels JAM, van der Straaten T, Marijt EWA, et al. Exploratory analysis of 1936 SNPs in ADME genes for association with busulfan clearance in adult hematopoietic stem cell recipients. Pharmacogenet Genom. 2013;23(12):675–83. https://doi.org/10.1097/fpc.0000000000000007.

    Article  Google Scholar 

  51. 51.

    Lee JW, Kang HJ, Lee SH, Yu KS, Kim NH, Yuk YJ, et al. Highly variable pharmacokinetics of once-daily intravenous busulfan when combined with fludarabine in pediatric patients: phase I clinical study for determination of optimal once-daily busulfan dose using pharmacokinetic modeling. Biol Blood Marrow Transplant. 2012;18(6):944–50. https://doi.org/10.1016/j.bbmt.2011.11.025.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ansari M, Rezgui MA, Theoret Y, Uppugunduri CR, Mezziani S, Vachon MF, et al. Glutathione S-transferase gene variations influence BU pharmacokinetics and outcome of hematopoietic SCT in pediatric patients. Bone Marrow Transplant. 2013;48(7):939–46. https://doi.org/10.1038/bmt.2012.265.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Ansari M, Lauzon-Joset JF, Vachon MF, Duval M, Theoret Y, Champagne MA, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45(2):261–7. https://doi.org/10.1038/bmt.2009.143.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Nava T, Rezgui MA, Uppugunduri CRS, Curtis PH, Theoret Y, Duval M, et al. GSTA1 genetic variants and conditioning regimen: missing key factors in dosing guidelines of busulfan in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23(11):1918–24. https://doi.org/10.1016/j.bbmt.2017.07.022.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    McCune JS, Baker KS, Blough DK, Gamis A, Bemer MJ, Kelton-Rehkopf MC, et al. Variation in prescribing patterns and therapeutic drug monitoring of intravenous busulfan in pediatric hematopoietic cell transplant recipients. J Clin Pharmacol. 2013;53(3):264–75. https://doi.org/10.1177/0091270012447196.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Bartelink IH, van Kesteren C, Boelens JJ, Egberts TC, Bierings MB, Cuvelier GD, et al. Predictive performance of a busulfan pharmacokinetic model in children and young adults. Ther Drug Monit. 2012;34(5):574–83. https://doi.org/10.1097/FTD.0b013e31826051bb.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Kawazoe A, Funaki T, Kim S. Population pharmacokinetic analysis of busulfan in Japanese pediatric and adult HCT patients. J Clin Pharmacol. 2018;58(9):1196–204. https://doi.org/10.1002/jcph.1120.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Ansari M, Theoret Y, Rezgui MA, Peters C, Mezziani S, Desjean C, et al. Association between busulfan exposure and outcome in children receiving intravenous busulfan before hematopoietic stem cell transplantation. Ther Drug Monit. 2014;36(1):93–9. https://doi.org/10.1097/FTD.0b013e3182a04fc7.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Benadiba J, Ansari M, Krajinovic M, Vachon M-F, Duval M, Teira P, et al. Pharmacokinetics-adapted Busulfan-based myeloablative conditioning before unrelated umbilical cord blood transplantation for myeloid malignancies in children. PLoS ONE. 2018;13(4):e0193862. https://doi.org/10.1371/journal.pone.0193862.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Philippe M, Neely M, Rushing T, Bertrand Y, Bleyzac N, Goutelle S. Maximal concentration of intravenous busulfan as a determinant of veno-occlusive disease: a pharmacokinetic-pharmacodynamic analysis in 293 hematopoietic stem cell transplanted children. Bone Marrow Transplant. 2018. https://doi.org/10.1038/s41409-018-0281-7.

    Article  PubMed  Google Scholar 

  61. 61.

    Kerl K, Diestelhorst C, Bartelink I, Boelens J, Trame MN, Boos J, et al. Evaluation of effects of busulfan and DMA on SOS in pediatric stem cell recipients. Pediatr Blood Cancer. 2014;61(2):306–11. https://doi.org/10.1002/pbc.24827.

    Article  PubMed  Google Scholar 

  62. 62.

    Gonzalez-Vicent M, Molina B, Perez A, Diaz MA. Once-daily intravenous busulfan for 47 pediatric patients undergoing autologous hematopoietic stem cell transplantation: a single center study. J Pediatr Hematol Oncol. 2012;34(3):180–3. https://doi.org/10.1097/MPH.0b013e3182431e1b.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Andion M, Molina B, Gonzalez-Vicent M, Alonso L, Hernandez C, Lassaletta A, et al. High-dose busulfan and cyclophosphamide as a conditioning regimen for autologous peripheral blood stem cell transplantation in childhood non-hodgkin lymphoma patients: a long-term follow-up study. J Pediatr Hematol Oncol. 2011;33(3):E89–91. https://doi.org/10.1097/MPH.0b013e3181fd6c79.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Al-Seraihy A, Ayas M, Al-Nounou R, El-Solh H, Al-Ahmari A, Al-Jefri A, et al. Outcome of allogeneic stem cell transplantation with a conditioning regimen of busulfan, cyclophosphamide and low-dose etoposide for children with myelodysplastic syndrome. Hematol Oncol Stem Cell Ther. 2011;4(3):121–5. https://doi.org/10.5144/1658-3876.2011.121.

    Article  PubMed  Google Scholar 

  65. 65.

    Schechter T, Perez-Albuerne E, Lin TF, Irwin MS, Essa M, Desai AV, et al. Veno-occlusive disease after high-dose busulfan-melphalan in neuroblastoma. Bone Marrow Transplant. 2020;55(3):531–7. https://doi.org/10.1038/s41409-018-0298-y.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Kim AH, Tse JC, Ikeda A, Moore TB. Evaluating pharmacokinetics and pharmacodynamics of intravenous busulfan in pediatric patients receiving bone marrow transplantation. Pediatr Transplant. 2009;13(8):971–6. https://doi.org/10.1111/j.1399-3046.2008.01098.x.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Huezo-Diaz Curtis P, Uppugunduri CRS, Muthukumaran J, Rezgui MA, Peters C, Bader P, et al. Association of CTH variant with sinusoidal obstruction syndrome in children receiving intravenous busulfan and cyclophosphamide before hematopoietic stem cell transplantation. Pharmacogenom J. 2018;18(1):64–9. https://doi.org/10.1038/tpj.2016.65.

    CAS  Article  Google Scholar 

  68. 68.

    Gokcebay DG, Azik F, Ozbek N, Isik P, Avci Z, Tavil B, et al. Clinical comparison of weight- and age-based strategy of dose administration in children receiving intravenous busulfan for hematopoietic stem cell transplantation. Pediatr Transplant. 2015;19(3):307–15. https://doi.org/10.1111/petr.12430.

    CAS  Article  Google Scholar 

  69. 69.

    Feng XY, Wu YJ, Zhang JR, Li JP, Zhu GH, Fan DF, et al. Busulfan systemic exposure and its relationship with efficacy and safety in hematopoietic stem cell transplantation in children: a meta-analysis. BMC Pediatr. 2020;20(1):176. https://doi.org/10.1186/s12887-020-02028-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250–67. https://doi.org/10.1016/j.pharmthera.2008.02.005.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics. 1997;7(6):441–52. https://doi.org/10.1097/00008571-199712000-00002.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Matalová P, Urbánek K, Anzenbacher P. Specific features of pharmacokinetics in children. Drug Metab Rev. 2016;48(1):70–9. https://doi.org/10.3109/03602532.2015.1135941.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525–38. https://doi.org/10.1046/j.1365-2125.1998.00721.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Almog S, Kurnik D, Shimoni A, Loebstein R, Hassoun E, Gopher A, et al. Linearity and stability of intravenous busulfan pharmacokinetics and the role of glutathione in busulfan elimination. Biol Blood Marrow Transplant. 2011;17(1):117–23. https://doi.org/10.1016/j.bbmt.2010.06.017.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Hassan Z, Hellstrom-Lindberg E, Alsadi S, Edgren M, Hagglund H, Hassan M. The effect of modulation of glutathione cellular content on busulphan-induced cytotoxicity on hematopoietic cells in vitro and in vivo. Bone Marrow Transplant. 2002;30(3):141–7. https://doi.org/10.1038/sj.bmt.1703615.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Sjoo F, Aschan J, Barkholt L, Hassan Z, Ringden O, Hassan M. N-acetyl-L-cysteine does not affect the pharmacokinetics or myelosuppressive effect of busulfan during conditioning prior to allogeneic stem cell transplantation. Bone Marrow Transplant. 2003;32(4):349–54. https://doi.org/10.1038/sj.bmt.1704143.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Vassord C, Lapoumeroulie C, Koumaravelou K, Srivastava A, Krishnamoorthy R. Endothelial cells do not express GSTA1: potential relevance to busulfan-mediated endothelial damage during haematopoietic stem cell transplantation. Eur J Haematol. 2008;80(4):299–302. https://doi.org/10.1111/j.1600-0609.2008.01031.x.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Gulbis AM, Culotta KS, Jones RB, Andersson BS. Busulfan and metronidazole: an often forgotten but significant drug interaction. Ann Pharmacother. 2011;45(7–8):e39. https://doi.org/10.1345/aph.1Q087.y

    Article  PubMed  Google Scholar 

  79. 79.

    Myers AL, Kawedia JD, Champlin RE, Kramer MA, Nieto Y, Ghose R, et al. Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opin Drug Metab Toxicol. 2017;13(9):901–23. https://doi.org/10.1080/17425255.2017.1360277.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Hassan M, Svensson JO, Nilsson C, Hentschke P, Al-Shurbaji A, Aschan J, et al. Ketobemidone may alter busulfan pharmacokinetics during high-dose therapy. Ther Drug Monit. 2000;22(4):383–5. https://doi.org/10.1097/00007691-200008000-00003.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A. Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein. Xenobiotica. 2005;35(8):785–96. https://doi.org/10.1080/00498250500183181.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Uppugunduri CRS, Rezgui MA, Diaz PH, Tyagi AK, Rousseau J, Daali Y, et al. The association of cytochrome P450 genetic polymorphisms with sulfolane formation and the efficacy of a busulfan-based conditioning regimen in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenom J. 2014;14(3):263–71. https://doi.org/10.1038/tpj.2013.38.

    CAS  Article  Google Scholar 

  83. 83.

    Palmer J, McCune JS, Perales MA, Marks D, Bubalo J, Mohty M, et al. Personalizing busulfan-based conditioning: considerations from the American society for blood and marrow transplantation practice guidelines committee. Biol Blood Marrow Transplant. 2016;22(11):1915–25. https://doi.org/10.1016/j.bbmt.2016.07.013.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Strouse C, Zhang Y, Zhang M-J, DiGilio A, Pasquini M, Horowitz MM, et al. Risk score for the development of veno-occlusive disease after allogeneic hematopoietic cell transplant. Biol Blood Marrow Transplant. 2018;24(10):2072–80. https://doi.org/10.1016/j.bbmt.2018.06.013.

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    McCune JS, Quinones CM, Ritchie J, Carpenter PA, van Maarseveen E, Yeh RF, et al. Harmonization of busulfan plasma exposure unit (BPEU): a community-initiated consensus statement. Biol Blood Marrow Transplant. 2019;25(9):1890–7. https://doi.org/10.1016/j.bbmt.2019.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Booth BP, Rahman A, Dagher R, Griebel D, Lennon S, Fuller D, et al. Population pharmacokinetic-based dosing of intravenous busulfan in pediatric patients. J Clin Pharmacol. 2007;47(1):101–11. https://doi.org/10.1177/0091270006295789.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65. https://doi.org/10.2165/00003088-200544100-00004.

    Article  PubMed  Google Scholar 

  88. 88.

    Okamoto Y, Nagatoshi Y, Kosaka Y, Kikuchi A, Kato S, Kigasawa H, et al. Prospective pharmacokinetic study of intravenous busulfan in hematopoietic stem cell transplantation in 25 children. Pediatr Transplant. 2014;18(3):294–301. https://doi.org/10.1111/petr.12236.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Brooks KM, Jarosinski P, Hughes T, Kang E, Shah NN, Gall JBL, et al. Test dose pharmacokinetics in pediatric patients receiving once-daily IV busulfan conditioning for hematopoietic stem cell transplant: a reliable approach? J Clin Pharmacol. 2017. https://doi.org/10.1002/jcph.1049.

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Kishimoto K, Hasegawa D, Irie K, Okada A, Nakamura S, Tamura A, et al. Pharmacokinetic analysis for model-supported therapeutic drug monitoring of busulfan in Japanese pediatric hematopoietic stem cell transplantation recipients. Pediatr Transplant. 2020;24(4):e13696. https://doi.org/10.1111/petr.13696.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Le Gall JB, Milone MC, Waxman IM, Shaw LM, Harrison L, Duffy D, et al. The pharmacokinetics and safety of twice daily i.v. BU during conditioning in pediatric allo-SCT recipients. Bone Marrow Transplant. 2013;48(1):19–25. https://doi.org/10.1038/bmt.2012.105.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Mehta PA, Emoto C, Fukuda T, Seyboth B, Teusink-Cross A, Davies SM, et al. Busulfan pharmacokinetics and precision dosing: are patients with Fanconi anemia different? Biol Blood Marrow Transplant. 2019;25(12):2416–21. https://doi.org/10.1016/j.bbmt.2019.07.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Nath CE, Earl JW, Pati N, Stephen K, Shaw PJ. Variability in the pharmacokinetics of intravenous busulphan given as a single daily dose to paediatric blood or marrow transplant recipients. Br J Clin Pharmacol. 2008;66(1):50–9. https://doi.org/10.1111/j.1365-2125.2008.03166.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Nishikawa T, Yamaguchi H, Ikawa K. Influence of GST polymorphisms on busulfan pharmacokinetics in Japanese children [erratum]. Pediatr Int. 2019;61(8):841. https://doi.org/10.1111/ped.13985.

    Article  Google Scholar 

  95. 95.

    Wall DA, Chan KW, Nieder ML, Hayashi RJ, Yeager AM, Kadota R, et al. Safety, efficacy, and pharmacokinetics of intravenous busulfan in children undergoing allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;54(2):291–8. https://doi.org/10.1002/pbc.22227.

    Article  PubMed  Google Scholar 

  96. 96.

    Behfar M, Koochakzadeh L, Yazdanian N, Salajegheh P, Rostami T, Khodayari-Namini N, et al. Outcome of allogeneic hematopoietic stem cell transplantation on diamond-Blackfan anemia using busulfan-based myeloablative regimen. Turk J Pediatr. 2019;61(3):407–12. https://doi.org/10.24953/turkjped.2019.03.013.

    Article  PubMed  Google Scholar 

  97. 97.

    Beier R, Albert MH, Bader P, Borkhardt A, Creutzig U, Eyrich M, et al. Allo-SCT using BU, CY and melphalan for children with AML in second CR. Bone Marrow Transplant. 2013;48(5):651–6. https://doi.org/10.1038/bmt.2012.204.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Chiesa R, Cappelli B, Crocchiolo R, Frugnoli I, Biral E, Noe A, et al. Unpredictability of intravenous busulfan pharmacokinetics in children undergoing hematopoietic stem cell transplantation for advanced beta thalassemia: limited toxicity with a dose-adjustment policy. Biol Blood Marrow Transplant. 2010;16(5):622–8. https://doi.org/10.1016/j.bbmt.2009.11.024.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Gungor T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet. 2014;383(9915):436–48. https://doi.org/10.1016/s0140-6736(13)62069-3.

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Hafez HA, Abdallah A, Hammad M, Hamdy N, Yassin D, Salem S, et al. Outcomes of allogenic hematopoietic cell transplantation for childhood chronic myeloid leukemia: single-center experience. Pediatr Transplant. 2020;24(4):e13664. https://doi.org/10.1111/petr.13664.

    Article  PubMed  Google Scholar 

  101. 101.

    Harris AC, Boelens JJ, Ahn KW, Fei M, Abraham A, Artz A, et al. Comparison of pediatric allogeneic transplant outcomes using myeloablative busulfan with cyclophosphamide or fludarabine. Blood Adv. 2018;2(11):1198–206. https://doi.org/10.1182/bloodadvances.2018016956.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Ishida H, Kato M, Kudo K, Taga T, Tomizawa D, Miyamura T, et al. Comparison of outcomes for pediatric patients with acute myeloid leukemia in remission and undergoing allogeneic hematopoietic cell transplantation with myeloablative conditioning regimens based on either intravenous busulfan or total body irradiation: a report from the Japanese society for hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015;21(12):2141–7. https://doi.org/10.1016/j.bbmt.2015.08.011.

    Article  PubMed  Google Scholar 

  103. 103.

    Kato M, Takahashi Y, Tomizawa D, Okamoto Y, Inagaki J, Koh K, et al. Comparison of intravenous with oral busulfan in allogeneic hematopoietic stem cell transplantation with myeloablative conditioning regimens for pediatric acute leukemia. Biol Blood Marrow Transplant. 2013;19(12):1690–4. https://doi.org/10.1016/j.bbmt.2013.09.012.

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Katsanis E, Sapp LN, Pelayo-Katsanis L, Whitney K, Zeng Y, Kopp LM. Alternative donor hematopoietic cell transplantation conditioned with myeloablative busulfan, fludarabine, and melphalan is well tolerated and effective against high-risk myeloid malignancies. J Pediatr Hematol Oncol. 2016;38(8):E315–8. https://doi.org/10.1097/mph.0000000000000621.

    CAS  Article  PubMed  Google Scholar 

  105. 105.

    Law J, Cowan MJ, Dvorak CC, Musick L, Long-Boyle JR, Baxter-Lowe LA, et al. Busulfan, fludarabine, and alemtuzumab as a reduced toxicity regimen for children with malignant and nonmalignant diseases improves engraftment and graft-versus-host disease without delaying immune reconstitution. Biol Blood Marrow Transplant. 2012;18(11):1656–63. https://doi.org/10.1016/j.bbmt.2012.05.006.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Maheshwari S, Kassim A, Yeh RF, Domm J, Calder C, Evans M, et al. Targeted Busulfan therapy with a steady-state concentration of 600–700 ng/mL in patients with sickle cell disease receiving HLA-identical sibling bone marrow transplant. Bone Marrow Transplant. 2014;49(3):366–9. https://doi.org/10.1038/bmt.2013.188.

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Oshrine B, Adams L, Nguyen ATH, Amankwah E, Shyr D, Hale G, et al. Comparison of melphalan- And busulfan-based myeloablative conditioning in children undergoing allogeneic transplantation for acute myeloid leukemia or myelodysplasia. Pediatr Transplant. 2020. https://doi.org/10.1111/petr.13672.

    Article  PubMed  Google Scholar 

  108. 108.

    Sisler IY, Koehler E, Koyama T, Domm JA, Ryan R, Levine JE, et al. Impact of conditioning regimen in allogeneic hematopoetic stem cell transplantation for children with acute myelogenous leukemia beyond first complete remission: a pediatric blood and marrow transplant consortium (PBMTC) study. Biol Blood Marrow Transplant. 2009;15(12):1620–7. https://doi.org/10.1016/j.bbmt.2009.08.014.

    Article  PubMed  Google Scholar 

  109. 109.

    Talleur AC, Triplett BM, Federico S, Mamcarz E, Janssen W, Wu J, et al. Consolidation therapy for newly diagnosed pediatric patients with high-risk neuroblastoma using busulfan/melphalan, autologous hematopoietic cell transplantation, anti-GD2 antibody, granulocyte-macrophage colony-stimulating factor, interleukin-2, and haploidentical natural killer cells. Biol Blood Marrow Transplant. 2017;23(11):1910–7. https://doi.org/10.1016/j.bbmt.2017.07.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Tesfaye H, Branova R, Klapkova E, Prusa R, Janeckova D, Riha P, et al. The importance of therapeutic drug monitoring (TDM) for parenteral busulfan dosing in conditioning regimen for hematopoietic stem cell transplantation (HSCT) in children. Ann Transplant. 2014;19:214–24. https://doi.org/10.12659/aot.889933.

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Uemura S, Mori T, Ishiko S, Takafuji S, Nino N, Yamamoto N, et al. Retrospective analysis of high-dose chemotherapy followed by autologous stem cell transplantation for high-risk pediatric osteosarcoma. Pediatr Hematol Oncol. 2020;37(4):337–43. https://doi.org/10.1080/08880018.2020.1729906.

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Wang JM, Luan Z, Jiang H, Fang JP, Qin MQ, Lee V, et al. Allogeneic hematopoietic stem cell transplantation in thirty-four pediatric cases of mucopolysaccharidosis-A ten year report from the China children transplant group. Biol Blood Marrow Transplant. 2016;22(11):2104–8. https://doi.org/10.1016/j.bbmt.2016.08.015.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachael Lawson.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Rachael Lawson, Christine E. Staatz, Christopher J. Fraser and Stefanie Hennig have no conflicts of interest that are relevant to the contents of this review.

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design. Material preparation and data collection was performed by Rachael Lawson. Data analysis was performed by Rachael Lawson, Stefanie Hennig, Christine Staatz and Chris Fraser. The first draft of the manuscript was written by Rachael Lawson and all authors commented on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lawson, R., Staatz, C.E., Fraser, C.J. et al. Review of the Pharmacokinetics and Pharmacodynamics of Intravenous Busulfan in Paediatric Patients. Clin Pharmacokinet 60, 17–51 (2021). https://doi.org/10.1007/s40262-020-00947-2

Download citation