Skip to main content

Advertisement

Log in

Pharmacokinetics and Pharmacodynamics of Approved and Investigational P2Y12 Receptor Antagonists

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Coronary artery disease remains the major cause of mortality worldwide. Antiplatelet drugs such as acetylsalicylic acid and P2Y12 receptor antagonists are cornerstone treatments for the prevention of thrombotic events in patients with coronary artery disease. Clopidogrel has long been the gold standard but has major pharmacological limitations such as a slow onset and long duration of effect, as well as weak platelet inhibition with high inter-individual pharmacokinetic and pharmacodynamic variability. There has been a strong need to develop potent P2Y12 receptor antagonists with more favorable pharmacological properties. Prasugrel and ticagrelor are more potent and have a faster onset of action; however, they have shown an increased bleeding risk compared with clopidogrel. Cangrelor is highly potent and has a very rapid onset and offset of effect; however, its indication is limited to P2Y12 antagonist-naïve patients undergoing percutaneous coronary intervention. Two novel P2Y12 receptor antagonists are currently in clinical development, namely vicagrel and selatogrel. Vicagrel is an analog of clopidogrel with enhanced and more efficient formation of its active metabolite. Selatogrel is characterized by a rapid onset of action following subcutaneous administration and developed for early treatment of a suspected acute myocardial infarction. This review article describes the clinical pharmacology profile of marketed P2Y12 receptor antagonists and those under development focusing on pharmacokinetic, pharmacodynamic, and drug–drug interaction liability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.

    Google Scholar 

  2. Mangels DR, Nathan A, Tuteja S, Giri J, Kobayashi T. Contemporary antiplatelet pharmacotherapy in the management of acute coronary syndromes. Curr Treat Options Cardiovasc Med. 2018;20:17.

    PubMed  Google Scholar 

  3. Gachet C. P2Y12 receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal. 2012;8:609–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Investig. 2004;113:340–5.

    CAS  PubMed  Google Scholar 

  5. Cattaneo M. P2Y12 receptors: structure and function. J Thromb Haemost. 2015;13:S10–6.

    CAS  PubMed  Google Scholar 

  6. Tubaro M, Danchin N, Goldstein P, Filippatos G, Hasin Y, Heras M, et al. Pre-hospital treatment of STEMI patients: a scientific statement of the Working Group Acute Cardiac Care of the European Society of Cardiology. Acute Card Care. 2011;13:56–67.

    CAS  PubMed  Google Scholar 

  7. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary. Circulation. 2014;130:2354–94.

    PubMed  Google Scholar 

  8. Desager J-P. Clinical pharmacokinetics of ticlopidine. Clin Pharmacokinet. 1994;26:347–55.

    CAS  PubMed  Google Scholar 

  9. Zhang L, Lu J, Dong W, Tian H, Feng W, You H, et al. Meta-analysis of comparison of the newer P2Y12 inhibitors (oral preparation or intravenous) to clopidogrel in patients with acute coronary syndrome. J Cardiovasc Pharmacol. 2017;69:147–55.

    CAS  PubMed  Google Scholar 

  10. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.

    CAS  PubMed  Google Scholar 

  11. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.

    CAS  PubMed  Google Scholar 

  12. Fan Z-G, Zhang W-L, Xu B, Ji J, Tian N-L, He S-H. Comparisons between ticagrelor and clopidogrel following percutaneous coronary intervention in patients with acute coronary syndrome: a comprehensive meta-analysis. Drug Des Dev Ther. 2019;13:719–30.

    CAS  Google Scholar 

  13. Kim K, Lee TA, Touchette DR, DiDomenico RJ, Ardati AK, Walton SM. Contemporary trends in oral antiplatelet agent use in patients treated with percutaneous coronary intervention for acute coronary syndrome. J Manag Care Spec Pharm. 2017;23:57–63.

    PubMed  Google Scholar 

  14. US Food and Drug Administration and Center for Drug Evaluation and Research. Plavix prescribing information. 2018: p. 1–27. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020839s070lbl.pdf. Accessed 02 Oct 2019.

  15. European Medicines Agency. Plavix SmPC. 2017: p. 2017. https://www.ema.europa.eu/en/documents/product-information/plavix-epar-product-information_en.pdf. Accessed 02 Oct 2019.

  16. US Food and Drug Administration and Center for Drug Evaluation and Research. Effient prescribing information. 2019: p. 1–19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/022307s016lbl.pdf. Accessed 02 Oct 2019.

  17. US Food and Drug Administration and Center for Drug Evaluation and Research. Brilinta prescribing information. 2018: p. 1–26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022433s022lbl.pdf. Accessed 02 Oct 2019.

  18. Basra SS, Wang TY, Simon DJN, Chiswell K, Virani SS, Alam M, et al. Ticagrelor use in acute myocardial infarction: insights from the National Cardiovascular Data Registry. J Am Heart Assoc. 2018;7:1–11.

    Google Scholar 

  19. Yudi MB, Clark DJ, Farouque O, Eccleston D, Andrianopoulos N, Duffy SJ, et al. Clopidogrel, prasugrel or ticagrelor in patients with acute coronary syndromes undergoing percutaneous coronary intervention. Intern Med J. 2016;46:559–65.

    CAS  PubMed  Google Scholar 

  20. Angerås O, Hasvold P, Thuresson M, Deleskog A, ÖBraun O. Treatment pattern of contemporary dual antiplatelet therapies after acute coronary syndrome: a Swedish nationwide population-based cohort study. Scand Cardiovasc J. 2016;50:99–107.

    PubMed  Google Scholar 

  21. Esteve-Pastor MA, Ruíz-Nodar JM, Orenes-Piñero E, Rivera-Caravaca JM, Quintana-Giner M, Véliz-Martínez A, et al. Temporal trends in the use of antiplatelet therapy in patients with acute coronary syndromes. J Cardiovasc Pharmacol Ther. 2018;23:57–65.

    CAS  PubMed  Google Scholar 

  22. European Medicines Agency. Kengrexal SmPC. 2017. https://www.ema.europa.eu/en/documents/product-information/kengrexal-epar-product-information_en.pdf. Accessed 02 Oct 2019.

  23. US Food and Drug Administration, Center for Drug Evaluation and Research. Kengreal prescribing information. 2015: p. 0–13. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/204958Orig1s000Lbl.pdf. Accessed 02 Oct 2019.

  24. Savi P, Herbert JM, Pflieger AM, Dol F, Delebassee D, Combalbert J, et al. Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol. 1992;44:527–32.

    CAS  PubMed  Google Scholar 

  25. Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80:486–501.

    CAS  PubMed  Google Scholar 

  26. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel Is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther. 2006;319:1467–76.

    CAS  PubMed  Google Scholar 

  27. Hagihara K, Kazui M, Kurihara A, Yoshiike M, Honda K, Okazaki O, et al. A possible mechanism for the differences in efficiency and variability of active metabolite formation from thienopyridine antiplatelet agents, prasugrel and clopidogrel. Drug Metab Dispos. 2009;37:2145–52.

    CAS  PubMed  Google Scholar 

  28. Neuvonen M, Tarkiainen EK, Tornio A, Hirvensalo P, Tapaninen T, Paile-Hyvärinen M, et al. Effects of genetic variants on carboxylesterase 1 gene expression, and clopidogrel pharmacokinetics and antiplatelet effects. Basic Clin Pharmacol Toxicol. 2018;122:341–5.

    CAS  PubMed  Google Scholar 

  29. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84:891–6.

    CAS  PubMed  Google Scholar 

  30. Tuffal G, Roy S, Lavisse M, Brasseur D, Schofield J, Delesque Touchard N, et al. An improved method for specific and quantitative determination of the clopidogrel active metabolite isomers in human plasma. Thromb Haemost. 2011;105:696–705.

    CAS  PubMed  Google Scholar 

  31. Pereillo JM, Maftouh M, Andrieu A, Uzabiaga MF, Fedeli O, Savi P, et al. Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos. 2002;30:1288–95.

    CAS  PubMed  Google Scholar 

  32. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38:92–9.

    CAS  PubMed  Google Scholar 

  33. Farid NA, Kurihara A, Wrighton SA. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol. 2010;50:126–42.

    CAS  PubMed  Google Scholar 

  34. Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost. 2007;5:2429–36.

    CAS  PubMed  Google Scholar 

  35. Dansette PM, Rosi J, Bertho G, Mansuy D. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer. Chem Res Toxicol. 2012;25:348–56.

    CAS  PubMed  Google Scholar 

  36. Mega JLL, Close SLL, Wiviott SDD, Shen L, Hockett RDD, Brandt JTT, et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.

    CAS  PubMed  Google Scholar 

  37. Bouman HJ, Schömig E, Van Werkum JW, Velder J, Hackeng CM, HirschhÄuser C, et al. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med. 2011;17:110–6.

    CAS  PubMed  Google Scholar 

  38. Ford NF. The metabolism of clopidogrel: CYP2C19 is a minor pathway. J Clin Pharmacol. 2016;56:1474–83.

    CAS  PubMed  Google Scholar 

  39. Ford NF, Taubert D. Clopidogrel, CYP2C19, and a black box. J Clin Pharmacol. 2013;53:241–8.

    PubMed  Google Scholar 

  40. Jiang X-L, Samant S, Lewis JP, Horenstein RB, Shuldiner AR, Yerges-Armstrong LM, et al. Development of a physiology-directed population pharmacokinetic and pharmacodynamic model for characterizing the impact of genetic and demographic factors on clopidogrel response in healthy adults. Eur J Pharm Sci. 2016;82:64–78.

    CAS  PubMed  Google Scholar 

  41. Ernest CS 2nd, Small DS, Rohatagi S, Salazar DE, Wallentin L, Winters KJ, et al. Population pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in aspirin-treated patients with stable coronary artery disease. J Pharmacokinet Pharmacodyn. 2008;35:593–618.

    CAS  PubMed  Google Scholar 

  42. Danielak D, Karaźniewicz-Łada M, Komosa A, Burchardt P, Lesiak M, Kruszyna Ł, et al. Influence of genetic co-factors on the population pharmacokinetic model for clopidogrel and its active thiol metabolite. Eur J Clin Pharmacol. 2017;73:1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee J, Hwang Y, Kang W, Seong SJ, Lim M, Lee HW, et al. Population pharmacokinetic/pharmacodynamic modeling of clopidogrel in Korean healthy volunteers and stroke patients. J Clin Pharmacol. 2012;52:985–95.

    CAS  PubMed  Google Scholar 

  44. Danese E, Fava C, Beltrame F, Tavella D, Calabria S, Benati M, et al. Relationship between pharmacokinetics and pharmacodynamics of clopidogrel in patients undergoing percutaneous coronary intervention: comparison between vasodilator-stimulated phosphoprotein phosphorylation assay and multiple electrode aggregometry. J Thromb Haemost. 2016;14:282–93.

    CAS  PubMed  Google Scholar 

  45. Small DS, Farid NA, Li YG, Steven Ernest C II, Payne CD, Salazar DE, et al. Effect of ranitidine on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. Curr Med Res Opin. 2008;24:2251–7.

    CAS  PubMed  Google Scholar 

  46. Frelinger AL 3rd, Bhatt DL, Lee RD, Mulford DJ, Wu J, Nudurupati S, et al. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet f. J Am Coll Cardiol. 2013;61:872–9.

    CAS  PubMed  Google Scholar 

  47. Payne CD, Li YG, Small DS, Ernest CS, Farid NA, Jakubowski JA, et al. Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel. J Cardiovasc Pharmacol. 2007;50:555–62.

    CAS  PubMed  Google Scholar 

  48. Taubert D, Kastrati A, Harlfinger S, Gorchakova O, Lazar A, von Beckerath N, et al. Pharmacokinetics of clopidogrel after administration of a high loading dose. Thromb Haemost. 2004;92:311–6.

    CAS  PubMed  Google Scholar 

  49. Lins R, Broekhuysen J, Necciari J, Deroubaix X. Pharmacokinetic profile of 14C-labeled clopidogrel. Semin Thromb Hemost. 1999;25(Suppl. 2):29–33.

    CAS  PubMed  Google Scholar 

  50. von Beckerath N, Taubert D, Pogatsa-Murray G, Schömig E, Kastrati A, Schömig A, et al. Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (intracoronary stenting and antithrombotic regimen: choose between 3 high oral doses for immediate clopidogrel effect). Circulation. 2005;112:2946–50.

    Google Scholar 

  51. Collet J-P, Hulot J-S, Anzaha G, Pena A, Chastre T, Caron C, et al. High doses of clopidogrel to overcome genetic resistance. JACC Cardiovasc Interv. 2011;4:392–402.

    PubMed  Google Scholar 

  52. Horenstein RB, Madabushi R, Zineh I, Yerges-Armstrong LM, Peer CJ, Schuck RN, et al. Effectiveness of clopidogrel dose escalation to normalize active metabolite exposure and antiplatelet effects in CYP2C19 poor metabolizers. J Clin Pharmacol. 2014;54:865–73.

    PubMed  PubMed Central  Google Scholar 

  53. Li YG, Ni L, Brandt JT, Small DS, Payne CD, Ernest CS, et al. Inhibition of platelet aggregation with prasugrel and clopidogrel: an integrated analysis in 846 subjects. Platelets. 2009;20:316–27.

    CAS  PubMed  Google Scholar 

  54. Thebault JJ, Kieffer G, Cariou R. Single-dose pharmacodynamics of clopidogrel. Semin Thromb Hemost. 1999;25(Suppl. 2):3–8.

    CAS  PubMed  Google Scholar 

  55. Authors/Task Force Members, Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, et al. ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2014;2014(35):2541–619.

    Google Scholar 

  56. Oliphant CS, Trevarrow BJ, Dobesh PP. Clopidogrel response variability: review of the literature and practical considerations. J Pharm Pract. 2016;29:26–34.

    PubMed  Google Scholar 

  57. Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD. Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol. 2007;50:1822–34.

    CAS  PubMed  Google Scholar 

  58. Gurbel PA, Tantry US. Drug insight: clopidogrel nonresponsiveness. Nat Clin Pract Cardiovasc Med. 2006;3:387–95.

    CAS  PubMed  Google Scholar 

  59. Farid NA, Smith RL, Gillespie TA, Rash TJ, Blair PE, Kurihara A, et al. The disposition of prasugrel, a novel thienopyridine, in humans. Drug Metab Dispos. 2007;35:1096–104.

    CAS  PubMed  Google Scholar 

  60. Williams ET, Jones KO, Ponsler GD, Lowery SM, Perkins EJ, Wrighton SA, et al. The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2. Drug Metab Dispos. 2008;36:1227–32.

    CAS  PubMed  Google Scholar 

  61. Kurokawa T, Fukami T, Yoshida T, Nakajima M. Arylacetamide deacetylase is responsible for activation of prasugrel in human and dog. Drug Metab Dispos. 2016;44:409–16.

    CAS  PubMed  Google Scholar 

  62. Rehmel JLF, Eckstein JA, Farid NA, Heim JB, Kasper SC, Kurihara A, et al. Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450. Drug Metab Dispos. 2006;34:600–7.

    CAS  PubMed  Google Scholar 

  63. Small DS, Li YG, Ernest CS, April JH, Farid NA, Payne CD, et al. Integrated analysis of pharmacokinetic data across multiple clinical pharmacology studies of prasugrel, a new thienopyridine antiplatelet agent. J Clin Pharmacol. 2011;51:321–32.

    CAS  PubMed  Google Scholar 

  64. Matsushima N, Jakubowski JA, Asai F, Naganuma H, Brandt JT, Hirota T, et al. Platelet inhibitory activity and pharmacokinetics of prasugrel (CS-747) a novel thienopyridine P2Y12 inhibitor: a multiple-dose study in healthy humans. Platelets. 2006;17:218–26.

    CAS  PubMed  Google Scholar 

  65. Sugidachi A, Ogawa T, Kurihara A, Hagihara K, Jakubowski JA, Hashimoto M, et al. The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel’s active metabolite. J Thromb Haemost. 2007;5:1545–51.

    CAS  PubMed  Google Scholar 

  66. Brandt JT, Payne CD, Wiviott SD, Weerakkody G, Farid NA, Small DS, et al. A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation. Am Heart J. 2007;153(66):e9–16.

    Google Scholar 

  67. Wallentin L, Varenhorst C, James S, Erlinge D, Braun OO, Jakubowski JA, et al. Prasugrel achieves greater and faster P2Y12 receptor-mediated platelet inhibition than clopidogrel due to more efficient generation of its active metabolite in aspirin-treated patients with coronary artery disease. Eur Heart J. 2007;29:21–30.

    PubMed  Google Scholar 

  68. Jakubowski JA, Payne CD, Weerakkody GJ, Brandt JT, Farid NA, Li YG, et al. Dose-dependent inhibition of human platelet aggregation by prasugrel and its interaction with aspirin in healthy subjects. J Cardiovasc Pharmacol. 2007;49:167–73.

    CAS  PubMed  Google Scholar 

  69. Husted S, Van Giezen JJJ. Ticagrelor: the first reversibly binding oral p2y12 receptor antagonist. Cardiovasc Ther. 2009;27:259–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Giezen JJ, Nilsson L, Berntsson P, Wissing BM, Giordanetto F, Tomlinson W, et al. Ticagrelor binds to human P2Y(12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost. 2009;7:1556–65.

    Google Scholar 

  71. Teng R, Maya J. Absolute bioavailability and regional absorption of ticagrelor in healthy volunteers. J Drug Assess. 2014;3:43–50.

    PubMed  PubMed Central  Google Scholar 

  72. Teng R, Oliver S, Hayes MA, Butler K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010;38:1514–21.

    CAS  PubMed  Google Scholar 

  73. Teng R, Butler K. Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2Y12 receptor antagonist, in healthy subjects. Eur J Clin Pharmacol. 2010;66:487–96.

    CAS  PubMed  Google Scholar 

  74. Adamski P, Buszko K, Sikora J, Niezgoda P, Barańska M, Ostrowska M, et al. Metabolism of ticagrelor in patients with acute coronary syndromes. Sci Rep. 2018;8:11746.

    PubMed  PubMed Central  Google Scholar 

  75. Teng R. Pharmacokinetic, pharmacodynamic and pharmacogenetic profile of the oral antiplatelet agent ticagrelor. Clin Pharmacokinet. 2012;51:305–18.

    CAS  PubMed  Google Scholar 

  76. Röshammar D, Bergstrand M, Andersson T, Storey RF, Hamrén B. Population pharmacokinetics of ticagrelor and AR-C124910XX in patients with prior myocardial infarction. Int J Clin Pharmacol Ther. 2017;55:416–24.

    PubMed  Google Scholar 

  77. Li J, Tang W, Storey RF, Husted S, Teng R. Population pharmacokinetics of ticagrelor in patients with acute coronary syndromes. Int J Clin Pharmacol Ther. 2016;54:666–74.

    PubMed  Google Scholar 

  78. Åstrand M, Amilon C, Röshammar D, Himmelmann A, Angiolillo DJ, Storey RF, et al. Pharmacokinetic-pharmacodynamic modelling of platelet response to ticagrelor in stable coronary artery disease and prior myocardial infarction patients. Br J Clin Pharmacol. 2018;1–9.

  79. Liu S, Xue L, Shi X, Sun Z, Zhu Z, Zhang X, et al. Population pharmacokinetics and pharmacodynamics of ticagrelor and AR-C124910XX in Chinese healthy male subjects. Eur J Clin Pharmacol. 2018;74:745–54.

    CAS  PubMed  Google Scholar 

  80. Teng R, Mitchell P, Butler K. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy subjects. Eur J Clin Pharmacol. 2013;69:877–83.

    PubMed  Google Scholar 

  81. Storey RF, Husted S, Harrington RA, Heptinstall S, Wilcox RG, Peters G, et al. Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J Am Coll Cardiol. 2007;50:1852–6.

    CAS  PubMed  Google Scholar 

  82. Van Giezen JJJ, Humphries RG. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost. 2005;31:195–204.

    PubMed  Google Scholar 

  83. Husted S, Emanuelsson H, Heptinstall S, Sandset PM, Wickens M, Peters G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J. 2006;27:1038–47.

    CAS  PubMed  Google Scholar 

  84. Gurbel PA, Bliden KP, Butler K, Tantry US, Gesheff T, Wei C, et al. Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation. 2009;120:2577–85.

    CAS  PubMed  Google Scholar 

  85. Rollini F, Franchi F, Cho JR, Degroat C, Bhatti M, Muniz-Lozano A, et al. A head-to-head pharmacodynamic comparison of prasugrel vs. ticagrelor after switching from clopidogrel in patients with coronary artery disease: results of a prospective randomized study. Eur Heart J. 2016;37:2722–30.

    CAS  PubMed  Google Scholar 

  86. Akers WS, Oh JJ, Oestreich JH, Ferraris S, Wethington M, Steinhubl SR. Pharmacokinetics and pharmacodynamics of a bolus and infusion of cangrelor: a direct, parenteral P2Y12 receptor antagonist. J Clin Pharmacol. 2010;50:27–35.

    CAS  PubMed  Google Scholar 

  87. Franchi F, Rollini F, Muñiz-Lozano A, Rae Cho J, Angiolillo DJ. Cangrelor: a review on pharmacology and clinical trial development. Expert Rev Cardiovasc Ther. 2013;11:1279–91.

    CAS  PubMed  Google Scholar 

  88. Waite LH, Phan YL, Spinler SA. Cangrelor: a novel intravenous antiplatelet agent with a questionable future. Pharmacotherapy. 2014;34:1061–76.

    CAS  PubMed  Google Scholar 

  89. Ferri N, Corsini A, Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on pharmacokinetic and pharmacodynamic properties. Drugs. 2013;73:1681–709.

    CAS  PubMed  Google Scholar 

  90. US Food and Drug Administration and Center for Drug Evaluation and Research. NDA 204958 clinical pharmacology and biopharmaceutics review(s). 2014. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/204958Orig1s000ClinPharmR.pdf. Accessed 22 Jan 2019.

  91. Wagner H, Angiolillo DJ, ten Berg JM, Bergmeijer TO, Jakubowski JA, Small DS, et al. Higher body weight patients on clopidogrel maintenance therapy have lower active metabolite concentrations, lower levels of platelet inhibition, and higher rates of poor responders than low body weight patients. J Thromb Thromb. 2013;38:127–36.

    Google Scholar 

  92. Angiolillo DJ, Fernández-Ortiz A, Bernardo E, Barrera Ramírez C, Sabaté M, Fernandez C, et al. Platelet aggregation according to body mass index in patients undergoing coronary stenting: should clopidogrel loading-dose be weight adjusted? J Invasive Cardiol. 2004;16:169–74.

    PubMed  Google Scholar 

  93. Small DS, Farid NA, Payne CD, Konkoy CS, Jakubowski JA, Winters KJ, et al. Effect of intrinsic and extrinsic factors on the clinical pharmacokinetics and pharmacodynamics of prasugrel. Clin Pharmacokinet. 2010;49:777–98.

    CAS  PubMed  Google Scholar 

  94. European Medicines Agency. Efient SmPC. 2017: p. 2017. https://www.ema.europa.eu/en/documents/product-information/efient-epar-product-information_en.pdf. Accessed 02 Oct 2019.

  95. Wrishko RE, Ernest CS 2nd, Small DS, Li YG, Weerakkody GJ, Riesmeyer JR, et al. Population pharmacokinetic analyses to evaluate the influence of intrinsic and extrinsic factors on exposure of prasugrel active metabolite in TRITON-TIMI 38. J Clin Pharmacol. 2009;49:984–98.

    CAS  PubMed  Google Scholar 

  96. European Medicines Agency. Brilique SmPC. 2017. https://www.ema.europa.eu/en/documents/product-information/brilique-epar-product-information_en.pdf. Accessed 02 Oct 2019.

  97. Price MJ, Murray SS, Angiolillo DJ, Lillie E, Smith EN, Tisch RL, et al. Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the GIFT (Genotype Information and Functional Testing) study. J Am Coll Cardiol. 2012;59:1928–37.

    CAS  PubMed  Google Scholar 

  98. Berger JS, Bhatt DL, Cannon CP, Chen Z, Jiang L, Jones JB, et al. The relative efficacy and safety of clopidogrel in women and men: a sex-specific collaborative meta-analysis. J Am Coll Cardiol. 2009;54:1935–45.

    CAS  PubMed  Google Scholar 

  99. Teng R, Mitchell P, Butler K. Effect of age and gender on pharmacokinetics and pharmacodynamics of a single ticagrelor dose in healthy individuals. Eur J Clin Pharmacol. 2012;68:1175–82.

    CAS  PubMed  Google Scholar 

  100. Qamar A, Bhatt DL. Optimizing the use of cangrelor in the real world. Am J Cardiovasc Drugs. 2017;17:5–16.

    CAS  PubMed  Google Scholar 

  101. Lau ES, Braunwald E, Murphy SA, Wiviott SD, Bonaca MP, Husted S, et al. Potent P2Y12 inhibitors in men versus women: a collaborative meta-analysis of randomized trials. J Am Coll Cardiol. 2017;69:1549–59.

    CAS  PubMed  Google Scholar 

  102. Karazniewicz-Lada M, Danielak D, Burchardt P, Kruszyna L, Komosa A, Lesiak M, et al. Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases. Clin Pharmacokinet. 2014;53:155–64.

    CAS  PubMed  Google Scholar 

  103. Small DS, Wrishko RE, Ernest CS, Ni L, Winters KJ, Farid NA, et al. Effect of age on the pharmacokinetics and pharmacodynamics of prasugrel during multiple dosing. Drugs Aging. 2009;26:781–90.

    CAS  PubMed  Google Scholar 

  104. Levine GN, Jeong YH, Goto S, Anderson JL, Huo Y, Mega JL, et al. Expert consensus document: World Heart Federation expert consensus statement on antiplatelet therapy in East Asian patients with ACS or undergoing PCI. Nat Rev Cardiol. 2014;11:597–606.

    PubMed  Google Scholar 

  105. Jiang XL, Samant S, Lesko LJ, Schmidt S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin Pharmacokinet. 2015;54:147–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Martis S, Peter I, Hulot J-S, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenom J. 2013;13:369–77.

    CAS  Google Scholar 

  107. Small DS, Payne CD, Kothare P, Yuen E, Natanegara F, Teng Loh M, et al. Pharmacodynamics and pharmacokinetics of single doses of prasugrel 30 mg and clopidogrel 300 mg in healthy Chinese and white volunteers: an open-label trial. Clin Ther. 2010;32:365–79.

    CAS  PubMed  Google Scholar 

  108. PMDA. Efient report on the deliberation results. 2014. http://www.pmda.go.jp/files/000213561.pdf. Accessed 02 Oct 2019.

  109. Teng R, Butler K. Pharmacokinetics, pharmacodynamics, and tolerability of single and multiple doses of ticagrelor in Japanese and Caucasian volunteers. Int J Clin Pharmacol Ther. 2014;52:478–91.

    CAS  PubMed  Google Scholar 

  110. Gaglia MA, Lipinski MJ, Lhermusier T, Steinvil A, Kiramijyan S, Pokharel S, et al. Comparison of platelet reactivity in black versus white patients with acute coronary syndromes after treatment with ticagrelor. Am J Cardiol. 2017;119:1135–40.

    CAS  PubMed  Google Scholar 

  111. Price MJ, Clavijo L, Angiolillo DJ, Carlson G, Caplan R, Teng R, et al. A randomised trial of the pharmacodynamic and pharmacokinetic effects of ticagrelor compared with clopidogrel in hispanic patients with stable coronary artery disease. J Thromb Thromb. 2015;39:8–14.

    CAS  Google Scholar 

  112. European Medicines Agency. Assessment report: Kengrexal. 2015: p. 1–113. https://www.ema.europa.eu/en/documents/assessment-report/kengrexal-epar-public-assessment-report_en.pdf. Accessed 02 Oct 2019.

  113. Cacabelos R. The metabolomic paradigm of pharmacogenomics in complex disorders. J Postgenom Drug Biomark Dev. 2012;2:5–7.

    Google Scholar 

  114. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116:496–526.

    CAS  PubMed  Google Scholar 

  115. Hulot J-S, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108:2244–7.

    CAS  PubMed  Google Scholar 

  116. Wang X, Shen C, Wang B, Huang X, Hu Z, Li J. Genetic polymorphisms of CYP2C19*2 and ABCB1 C3435T affect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome. Gene. 2015;558:200–7.

    CAS  PubMed  Google Scholar 

  117. Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomás M, et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart. 2012;98:100–8.

    CAS  PubMed  Google Scholar 

  118. Cavallari LH, Lee CR, Beitelshees AL, Cooper-DeHoff RM, Duarte JD, Voora D, et al. Multisite investigation of outcomes with implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. JACC Cardiovasc Interv. 2018;11:181–91.

    PubMed  Google Scholar 

  119. Joo HJ, Ahn SG, Park JH, Park JY, Hong SJ, Kim SY, et al. Effects of genetic variants on platelet reactivity and 1-year clinical outcomes after percutaneous coronary intervention: a prospective multicentre registry study. Sci Rep. 2018;8:1–9.

    Google Scholar 

  120. Park KW, Park JJ, Jeon KH, Kang SH, Oh IY, Yang HM, et al. Enhanced clopidogrel responsiveness in smokers: Smokers’ paradox is dependent on cytochrome P450 CYP1A2 status. Arterioscler Thromb Vasc Biol. 2011;31:665–71.

    CAS  PubMed  Google Scholar 

  121. Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype–phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63:537–46.

    CAS  PubMed  Google Scholar 

  122. Lewis JP, Horenstein RB, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genom. 2013;23:1–8.

    CAS  Google Scholar 

  123. Xiao FY, Luo JQ, Liu M, Chen BL, Cao S, Liu ZQ, et al. Effect of carboxylesterase 1 S75N on clopidogrel therapy among acute coronary syndrome patients. Sci Rep. 2017;7:1–6.

    Google Scholar 

  124. Jaitner J, Morath T, Byrne RA, Braun S, Gebhard D, Bernlochner I, et al. No association of ABCB1 C3435T genotype with clopidogrel response or risk of stent thrombosis in patients undergoing coronary stenting. Circ Cardiovasc Interv. 2012;5(82–8):S1–2.

    Google Scholar 

  125. Su J, Xu J, Li X, Zhang H, Hu J, Fang R, et al. ABCB1 C3435T polymorphism and response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis. PLoS One. 2012;7:e46366.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Luo M, Li J, Xu X, Sun X, Sheng W. ABCB1 C3435T polymorphism and risk of adverse clinical events in clopidogrel treated patients: a meta-analysis. Thromb Res. 2012;129:754–9.

    CAS  PubMed  Google Scholar 

  127. Cui G, Zhang S, Zou J, Chen Y, Chen H. P2Y12 receptor gene polymorphism and the risk of resistance to clopidogrel: a meta-analysis and review of the literature. Adv Clin Exp Med. 2017;26:343–9.

    PubMed  Google Scholar 

  128. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation. 2009;119:2553–60.

    CAS  PubMed  Google Scholar 

  129. Holmberg MT, Tornio A, Paile-Hyvärinen M, Tarkiainen EK, Neuvonen M, Neuvonen PJ, et al. CYP3A4*22 impairs the elimination of ticagrelor, but has no significant effect on the bioactivation of clopidogrel or prasugrel. Clin Pharmacol Ther. 2019;105:448–57.

    CAS  PubMed  Google Scholar 

  130. Tantry US, Bliden KP, Wei C, Storey RF, Armstrong M, Butler K, et al. First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the ONSET/OFFSET and RESPOND genotype studies. Circ Cardiovasc Genet. 2010;3:556–66.

    CAS  PubMed  Google Scholar 

  131. Wang H, Qi J, Li Y, Tang Y, Li C, Li J, et al. Pharmacodynamics and pharmacokinetics of ticagrelor vs. clopidogrel in patients with acute coronary syndromes and chronic kidney disease. Br J Clin Pharmacol. 2018;84:88–96.

    CAS  PubMed  Google Scholar 

  132. Deray G, Bagnis C, Brouard R, Necciari J, Leenhardt AF, Raymond F, et al. Clopidogrel activities in patients with renal function impairment. Clin Drug Investig. 1998;16:319–28.

    CAS  PubMed  Google Scholar 

  133. Small DS, Wrishko RE, Ernest CS, Ni L, Winters KJ, Farid NA, et al. Prasugrel pharmacokinetics and pharmacodynamics in subjects with moderate renal impairment and end-stage renal disease. J Clin Pharm Ther. 2009;34:585–94.

    CAS  PubMed  Google Scholar 

  134. Butler K, Teng R. Pharmacokinetics, pharmacodynamics, and safety of ticagrelor in volunteers with severe renal impairment. J Clin Pharmacol. 2012;52:1388–98.

    CAS  PubMed  Google Scholar 

  135. Small DS, Farid NA, Li YG, Ernest CS, Winters KJ, Salazar DE, et al. Pharmacokinetics and pharmacodynamics of prasugrel in subjects with moderate liver disease. J Clin Pharm Ther. 2009;34:575–83.

    CAS  PubMed  Google Scholar 

  136. Butler K, Teng R. Pharmacokinetics, pharmacodynamics, and safety of ticagrelor in volunteers with mild hepatic impairment. J Clin Pharmacol. 2011;51:978–87.

    CAS  PubMed  Google Scholar 

  137. Rollini F, Franchi F, Muñiz-Lozano A, Angiolillo DJ. Platelet function profiles in patients with diabetes mellitus. J Cardiovasc Transl Res. 2013;6:329–45.

    PubMed  Google Scholar 

  138. Sweeny JM, Angiolillo DJ, Franchi F, Rollini F, Waksman R, Raveendran G, et al. Impact of diabetes mellitus on the pharmacodynamic effects of ticagrelor versus clopidogrel in troponin-negative acute coronary syndrome patients undergoing ad hoc percutaneous coronary intervention. J Am Heart Assoc. 2017;6:1–10.

    Google Scholar 

  139. Lee RH, Bergmeier W. Sugar makes neutrophils RAGE: linking diabetes-associated hyperglycemia to thrombocytosis and platelet reactivity. J Clin Investig. 2017;127:2040–3.

    PubMed  Google Scholar 

  140. Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation. 2011;123:798–813.

    PubMed  Google Scholar 

  141. Hu L, Chang L, Zhang Y, Zhai L, Zhang S, Qi Z, et al. Platelets express activated P2Y12 receptor in patients with diabetes mellitus. Circulation. 2017;136:817–33.

    CAS  PubMed  Google Scholar 

  142. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramírez C, Sabaté M, Jimenez-Quevedo P, et al. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes. 2005;54:2430–5.

    CAS  PubMed  Google Scholar 

  143. Angiolillo DJ, Jakubowski JA, Ferreiro JL, Tello-Montoliu A, Rollini F, Franchi F, et al. Impaired responsiveness to the platelet P2Y12 receptor antagonist clopidogrel in patients with type 2 diabetes and coronary artery disease. J Am Coll Cardiol. 2014;64:1005–14.

    CAS  PubMed  Google Scholar 

  144. Angiolillo DJ, Badimon JJ, Saucedo JF, Frelinger AL, Michelson AD, Jakubowski JA, et al. A pharmacodynamic comparison of prasugrel vs. high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy in diabetes MellitUS (OPTIMUS)-3 Trial. Eur Heart J. 2011;32:838–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Franchi F, Rollini F, Aggarwal N, Hu J, Kureti M, Durairaj A, et al. Pharmacodynamic comparison of prasugrel versus ticagrelor in patients with type 2 diabetes mellitus and coronary artery disease: the OPTIMUS (Optimizing Antiplatelet Therapy in Diabetes Mellitus)-4 Study. Circulation. 2016;134:780–92.

    CAS  PubMed  Google Scholar 

  146. Franchi F, James SK, Ghukasyan Lakic T, Budaj AJ, Cornel JH, Katus HA, et al. Impact of diabetes mellitus and chronic kidney disease on cardiovascular outcomes and platelet P2Y12 receptor antagonist effects in patients with acute coronary syndromes: insights from the PLATO Trial. J Am Heart Assoc. 2019;8(6):e011139.

    PubMed  PubMed Central  Google Scholar 

  147. Alexopoulos D, Xanthopoulou I, Mavronasiou E, Stavrou K, Siapika A, Tsoni E, et al. Randomized assessment of ticagrelor versus prasugrel antiplatelet effects in patients with diabetes. Diabetes Care. 2013;36:2211–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ferreiro JL, Ueno M, Tello-Montoliu A, Tomasello SD, Capodanno D, Capranzano P, et al. Effects of cangrelor in coronary artery disease patients with and without diabetes mellitus: an in vitro pharmacodynamic investigation. J Thromb Thromb. 2013;35:155–64.

    CAS  Google Scholar 

  149. Frelinger AL, Lee RD, Mulford DJ, Wu J, Nudurupati S, Nigam A, et al. A randomized, 2-period, crossover design study to assess the effects of dexlansoprazole, lansoprazole, esomeprazole, and omeprazole on the steady-state pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. J Am Coll Cardiol. 2012;59:1304–11.

    CAS  PubMed  Google Scholar 

  150. Simon N, Finzi J, Cayla G, Montalescot G, Collet JP, Hulot JS. Omeprazole, pantoprazole, and CYP2C19 effects on clopidogrel pharmacokinetic–pharmacodynamic relationships in stable coronary artery disease patients. Eur J Clin Pharmacol. 2015;71:1059–66.

    CAS  PubMed  Google Scholar 

  151. Gilard M, Arnaud B, Cornily JC, Le Gal G, Lacut K, Le Calvez G, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) Study. J Am Coll Cardiol. 2008;51:256–60.

    CAS  PubMed  Google Scholar 

  152. Ferreiro JL, Ueno M, Capodanno D, Desai B, Dharmashankar K, Darlington A, et al. Pharmacodynamic effects of concomitant versus staggered clopidogrel and omeprazole intake. Circ Cardiovasc Interv. 2010;3:436–41.

    CAS  PubMed  Google Scholar 

  153. Farid NA, Payne CD, Small DS, Winters KJ, Ernest CS, Brandt JT, et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther. 2007;81:735–41.

    CAS  PubMed  Google Scholar 

  154. Lau WC, Waskell LA, Watkins PB, Neer CJ, Horowitz K, Hopp AS, et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug–drug interaction. Circulation. 2003;107:32–7.

    CAS  PubMed  Google Scholar 

  155. Judge HM, Patil SB, Buckland RJ, Jakubowski JA, Storey RF. Potentiation of clopidogrel active metabolite formation by rifampicin leads to greater P2Y12 receptor blockade and inhibition of platelet aggregation after clopidogrel. J Thromb Haemost. 2010;8:1820–7.

    CAS  PubMed  Google Scholar 

  156. Duarte GS, Nunes-Ferreira A, Rodrigues FB, Pinto FJ, Ferreira JJ, Costa J, et al. Morphine in acute coronary syndrome: systematic review and meta-analysis. BMJ Open. 2019;9:e025232.

    PubMed  PubMed Central  Google Scholar 

  157. Hobl EL, Stimpfl T, Ebner J, Schoergenhofer C, Derhaschnig U, Sunder-Plassmann R, et al. Morphine decreases clopidogrel concentrations and effects: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2014;63:630–5.

    CAS  PubMed  Google Scholar 

  158. Zeymer U, Mark B, Montalescot G, Thiele H, Zahn R. Influence of morphine on the effect of clopidogrel and prasugrel in patients with ST elevation myocardial infarction: results of the ETAMI trial. Eur Heart J. 2015;36:227–8.

    Google Scholar 

  159. Clarke T, Waskell L. The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos. 2003;31:53–9.

    CAS  PubMed  Google Scholar 

  160. Farid NA, Small DS, Payne CD, Jakubowski JA, Brandt JT, Li YG, et al. Effect of atorvastatin on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in healthy subjects. Pharmacotherapy. 2008;28:1483–94.

    CAS  PubMed  Google Scholar 

  161. Kreutz RP, Breall JA, Sinha A, von der Lohe E, Kovacs RJ, Flockhart DA. Simultaneous administration of high-dose atorvastatin and clopidogrel does not interfere with platelet inhibition during percutaneous coronary intervention. Clin Pharmacol Adv Appl. 2016;8:45–50.

    CAS  Google Scholar 

  162. Trenk D, Hochholzer W, Frundi D, Stratz C, Valina CM, Bestehorn H-P, et al. Impact of cytochrome P450 3A4-metabolized statins on the antiplatelet effect of a 600-mg loading dose clopidogrel and on clinical outcome in patients undergoing elective coronary stent placement. Thromb Haemost. 2008;99:174–81.

    CAS  PubMed  Google Scholar 

  163. Leoncini M, Toso A, Maioli M, Angiolillo DJ, Giusti B, Marcucci R, et al. High-dose atorvastatin on the pharmacodynamic effects of double-dose clopidogrel in patients undergoing percutaneous coronary interventions. JACC Cardiovasc Interv. 2013;6:169–79.

    PubMed  Google Scholar 

  164. Karaźniewicz-Łada M, Rzeźniczak J, Główka F, Gumienna A, Dolatowski F, Słomczyński M, et al. Influence of statin treatment on pharmacokinetics and pharmacodynamics of clopidogrel and its metabolites in patients after coronary angiography/angioplasty. Biomed Pharmacother. 2019;116:108991.

    PubMed  Google Scholar 

  165. Verdoia M, Nardin M, Sartori C, Pergolini P, Rolla R, Barbieri L, et al. Impact of atorvastatin or rosuvastatin co-administration on platelet reactivity in patients treated with dual antiplatelet therapy. Atherosclerosis. 2015;243:389–94.

    CAS  PubMed  Google Scholar 

  166. Suh J-W, Cha M-J, Lee S-P, Chae I-H, Bae J-H, Kwon T-G, et al. Relationship between statin type and responsiveness to clopidogrel in patients treated with percutaneous coronary intervention: a subgroup analysis of the CILON-T trial. J Atheroscler Thromb. 2014;21:140–50.

    PubMed  Google Scholar 

  167. Oh J, Shin D, Lim KS, Lee S, Jung KH, Chu K, et al. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity. Clin Pharmacol Ther. 2014;95:608–16.

    CAS  PubMed  Google Scholar 

  168. Liang Y, Hirsh J, Weitz JI, Sloane D, Gao P, Pare G, et al. Active metabolite concentration of clopidogrel in patients taking different doses of aspirin: results of the interaction trial. J Thromb Haemost. 2015;13:347–52.

    CAS  PubMed  Google Scholar 

  169. Gurbel PA, Bliden KP, Logan DK, Kereiakes DJ, Lasseter KC, White A, et al. The influence of smoking status on the pharmacokinetics and pharmacodynamics of clopidogrel and prasugrel: the paradox study. J Am Coll Cardiol. 2013;62:505–12.

    CAS  PubMed  Google Scholar 

  170. Swiger KJ, Yousuf O, Bliden KP, Tantry US, Gurbel PA. Cigarette smoking and clopidogrel interaction. Curr Cardiol Rep. 2013;15:21–9.

    Google Scholar 

  171. Itkonen MK, Tornio A, Neuvonen M, Neuvonen PJ, Niemi M, Backman JT. Clopidogrel has no clinically meaningful effect on the pharmacokinetics of the OATP1B1 and CYP3A4 substrate simvastatin. Drug Metab Dispos. 2015;1655–60.

  172. Tornio A, Filppula AM, Kailari O, Neuvonen M, Nyrönen TH, Tapaninen T, et al. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug–drug interactions. Clin Pharmacol Ther. 2014;96:498–507.

    CAS  PubMed  Google Scholar 

  173. US Food and Drug Administration and Center for Drug Evaluation and Research. Uptravi® prescribing information. 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/207947s007lbl.pdf. Accessed 02 Oct 2019.

  174. Ancrenaz V, Déglon J, Samer C, Staub C, Dayer P, Daali Y, et al. Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers. Basic Clin Pharmacol Toxicol. 2013;112:132–7.

    CAS  PubMed  Google Scholar 

  175. Farid NA, Jakubowski JA, Payne CD, Li YG, Jin Y, Ernest CS II, et al. Effect of rifampin on the pharmacokinetics and pharmacodynamics of prasugrel in healthy male subjects. Curr Med Res Opin. 2009;25:1821–9.

    CAS  PubMed  Google Scholar 

  176. Small DS, Farid NA, Payne CD, Weerakkody GJ, Li YG, Brandt JT, et al. Effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. J Clin Pharmacol. 2008;48:475–84.

    CAS  PubMed  Google Scholar 

  177. Hobl E-L, Reiter B, Schoergenhofer C, Schwameis M, Derhaschnig U, Lang IM, et al. Morphine interaction with prasugrel: a double-blind, cross-over trial in healthy volunteers. Clin Res Cardiol. 2016;105:349–55.

    CAS  PubMed  Google Scholar 

  178. Parodi G, Bellandi B, Xanthopoulou I, Capranzano P, Capodanno D, Valenti R, et al. Morphine is associated with a delayed activity of oral antiplatelet agents in patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2015;8:1–6.

    Google Scholar 

  179. Thomas MR, Morton AC, Hossain R, Chen B, Luo L, Shahari NNBM, et al. Morphine delays the onset of action of prasugrel in patients with prior history of ST-elevation myocardial infarction. Thromb Haemost. 2016;116:96–102.

    PubMed  Google Scholar 

  180. Johnson TW, Mumford AD, Scott LJ, Mundell S, Butler M, Strange JW, et al. A study of platelet inhibition, using a “point of care” platelet function test, following primary percutaneous coronary intervention for ST-elevation myocardial infarction [PINPOINT-PPCI]. PLoS One. 2015;10:e0144984.

    PubMed  PubMed Central  Google Scholar 

  181. Teng R, Butler K. Effect of the CYP3A inhibitors, diltiazem and ketoconazole, on ticagrelor pharmacokinetics in healthy volunteers. J Drug Assess. 2013;2:30–9.

    PubMed  PubMed Central  Google Scholar 

  182. Teng R, Kujacic M, Hsia J. Pharmacokinetic interaction study of ticagrelor and cyclosporine in healthy volunteers. Clin Drug Investig. 2014;34:529–36.

    CAS  PubMed  Google Scholar 

  183. Hobl E-L, Reiter B, Schoergenhofer C, Schwameis M, Derhaschnig U, Kubica J, et al. Morphine decreases ticagrelor concentrations but not its antiplatelet effects: a randomized trial in healthy volunteers. Eur J Clin Investig. 2016;46:7–14.

    CAS  Google Scholar 

  184. Kubica J, Adamski P, Ostrowska M, Sikora J, Kubica JM, Sroka WD, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J. 2016;37:245–52.

    CAS  PubMed  Google Scholar 

  185. Silvain J, Storey RF, Cayla G, Esteve J-B, Dillinger J-G, Rousseau H, et al. P2Y12 receptor inhibition and effect of morphine in patients undergoing primary PCI for ST-segment elevation myocardial infarction: the PRIVATE-ATLANTIC study. Thromb Haemost. 2016;116:369–78.

    PubMed  Google Scholar 

  186. Kickler T, Thiemann D, Ibrahim K, Blumenthal R, Goli R, Hasan R, et al. Fentanyl delays the platelet inhibition effects of oral ticagrelor: full report of the PACIFY randomized clinical trial. Thromb Haemost. 2018;118:1409–18.

    PubMed  PubMed Central  Google Scholar 

  187. Teng R, Maya J, Butler K. Evaluation of the pharmacokinetics and pharmacodynamics of ticagrelor co-administered with aspirin in healthy volunteers. Platelets. 2013;24:615–24.

    CAS  PubMed  Google Scholar 

  188. Thomas MR, Storey RF. Impact of aspirin dosing on the effects of P2Y12 inhibition in patients with acute coronary syndromes. J Cardiovasc Transl Res. 2014;7:19–28.

    CAS  PubMed  Google Scholar 

  189. DiNicolantonio JJ, Serebruany VL. Challenging the FDA black box warning for high aspirin dose with ticagrelor in patients with diabetes. Diabetes. 2013;62:669–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Teng R, Butler K. The effect of ticagrelor on the metabolism of midazolam in healthy volunteers. Clin Ther. 2013;35:1025–37.

    CAS  PubMed  Google Scholar 

  191. Teng R, Butler K. A pharmacokinetic interaction study of ticagrelor and digoxin in healthy volunteers. Eur J Clin Pharmacol. 2013;69:1801–8.

    CAS  PubMed  Google Scholar 

  192. Teng R, Mitchell PD, Butler KA. Pharmacokinetic interaction studies of co-administration of ticagrelor and atorvastatin or simvastatin in healthy volunteers. Eur J Clin Pharmacol. 2013;69:477–87.

    CAS  PubMed  Google Scholar 

  193. Danielak D, Karaźniewicz-Łada M, Główka F. Ticagrelor in modern cardiology: an up-to-date review of most important aspects of ticagrelor pharmacotherapy. Expert Opin Pharmacother. 2018;19:103–12.

    CAS  PubMed  Google Scholar 

  194. Danielak D, Karaźniewicz-Łada M, Główka F. Assessment of the risk of rhabdomyolysis and myopathy during concomitant treatment with ticagrelor and statins. Drugs. 2018;78:1105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Schneider DJ, Seecheran N, Raza SS, Keating FK, Gogo P. Pharmacodynamic effects during the transition between cangrelor and prasugrel. Coron Artery Dis. 2015;26:42–8.

    PubMed  Google Scholar 

  196. Schneider DJ, Agarwal Z, Seecheran N, Keating FK, Gogo P. Pharmacodynamic effects during the transition between cangrelor and ticagrelor. JACC Cardiovasc Interv. 2014;7:435–42.

    PubMed  Google Scholar 

  197. Schneider DJ, Agarwal Z, Seecheran N, Gogo P. Pharmacodynamic effects when clopidogrel is given before cangrelor discontinuation. J Interv Cardiol. 2015;28:415–9.

    PubMed  Google Scholar 

  198. Judge HM, Buckland RJ, Jakubowski JA, Storey RF. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y 12 receptors in vitro. Platelets. 2016;27:191–5.

    CAS  PubMed  Google Scholar 

  199. Savonitto S, De Luca G, Goldstein P, van t’ Hof A, Zeymer U, Morici N, et al. Antithrombotic therapy before, during and after emergency angioplasty for ST elevation myocardial infarction. Eur Hear J Acute Cardiovasc Care. 2017;6:173–90.

    Google Scholar 

  200. Scott IA. “Time is muscle” in reperfusing occluded coronary arteries in acute myocardial infarction. Med J Aust. 2010;193:493–5.

    PubMed  Google Scholar 

  201. Makam RP, Erskine N, Yarzebski J, Lessard D, Lau J, Allison J, et al. Decade long trends (2001–2011) in duration of pre-hospital delay among elderly patients hospitalized for an acute myocardial infarction. J Am Heart Assoc. 2016;5:75–84.

    Google Scholar 

  202. Saczynski JS, Yarzebski J, Lessard D, Spencer FA, Gurwitz JH, Gore JM, et al. Trends in prehospital delay in patients with acute myocardial infarction (from the Worcester Heart Attack Study). Am J Cardiol. 2008;102:1589–94.

    PubMed  PubMed Central  Google Scholar 

  203. Adamski P, Sikora J, Laskowska E, Buszko K, Ostrowska M, Uminska JM, et al. Comparison of bioavailability and antiplatelet action of ticagrelor in patients with ST-elevation myocardial infarction and non-ST-elevation myocardial infarction: a prospective, observational, single-centre study. PLoS One. 2017;12:e0186013.

    PubMed  PubMed Central  Google Scholar 

  204. Wohner N. Role of cellular elements in thrombus formation and dissolution. Cardiovasc Hematol Agents Med Chem. 2008;6:224–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. FDA Drug Safety Communication: reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm203888.htm. Accessed 05 Apr 2019.

  206. Siller-Matula JM, Trenk D, Schrör K, Gawaz M, Kristensen SD, Storey RF, et al. Response variability to P2Y12receptor inhibitors: expectations and reality. JACC Cardiovasc Interv. 2013;6:1111–28.

    PubMed  Google Scholar 

  207. Jiang J, Chen X, Zhong D. Arylacetamide deacetylase is involved in vicagrel bioactivation in humans. Front Pharmacol. 2017;8:1–8.

    Google Scholar 

  208. Liu C, Zhang Y, Chen W, Lu Y, Li W, Liu Y, et al. Pharmacokinetics and pharmacokinetic/pharmacodynamic relationship of vicagrel, a novel thienopyridine P2Y12 inhibitor, compared with clopidogrel in healthy Chinese subjects following single oral dosing. Eur J Pharm Sci. 2019;127:151–60.

    CAS  PubMed  Google Scholar 

  209. Shan J, Zhang B, Zhu Y, Jiao B, Zheng W, Qi X, et al. Overcoming clopidogrel resistance: discovery of vicagrel as a highly potent and orally bioavailable antiplatelet agent. J Med Chem. 2012;55:3342–52.

    CAS  PubMed  Google Scholar 

  210. Qiu Z, Li N, Song L, Lu Y, Jing J, Parekha HS, et al. Contributions of intestine and plasma to the presystemic bioconversion of vicagrel, an acetate of clopidogrel. Pharm Res. 2014;31:238–51.

    CAS  PubMed  Google Scholar 

  211. Li X, Liu C, Zhu X, Wei H, Zhang H, Chen H, et al. Evaluation of tolerability, pharmacokinetics and pharmacodynamics of vicagrel, a novel P2Y12 antagonist, in healthy chinese volunteers. Front Pharmacol. 2018;9:643.

    PubMed  PubMed Central  Google Scholar 

  212. Caroff E, Hubler F, Meyer E, Renneberg D, Gnerre C, Treiber A, et al. 4-((R)-2-{[6-((S)-3-Methoxypyrrolidin-1-yl)-2-phenylpyrimidine-4-carbonyl]amino}-3-phosphonopropionyl)piperazine-1-carboxylic acid butyl ester (ACT-246475) and its prodrug (ACT-281959), a novel P2Y 12 receptor antagonist with a wider therapeutic window. J Med Chem. 2015;58:9133–53.

    CAS  PubMed  Google Scholar 

  213. Juif P-E, Boehler M, Dobrow M, Ufer M, Dingemanse J. Clinical pharmacology of the reversible and potent P2Y12 receptor antagonist ACT-246475 after single subcutaneous administration in healthy male subjects. J Clin Pharmacol. 2019;59:123–30.

    CAS  PubMed  Google Scholar 

  214. Ufer M, Huynh C, van Lier JJ, Caroff E, Fischer H, Dingemanse J. Absorption, distribution, metabolism and excretion of the P2Y12 receptor antagonist selatogrel after subcutaneous administration in healthy subjects. Xenobiotica. 2019;1–8.

  215. Schilling U, Ufer M, Dingemanse J. Effect of rifampin-mediated inhibition of the hepatic uptake transporters OATP1B1 and OATP1B3 on the pharmacokinetics of the P2Y12 receptor antagonist selatogrel (ACT-246475). Clin Pharmacol Drug Dev. 2019;8:22.

    Google Scholar 

  216. Storey RF, Gurbel PA, ten Berg J, Bernaud C, Dangas GD, Frenoux J, et al. Pharmacodynamics, pharmacokinetics, and safety of single-dose subcutaneous administration of selatogrel, a novel P2Y12 receptor antagonist, in patients with chronic coronary syndromes. Eur Heart J. 2019;1–9.

  217. Siller-Matula JM, Trenk D, Krähenbühl S, Michelson AD, Delle-Karth G. Clinical implications of drug-drug interactions with P2Y12 receptor inhibitors. J Thromb Haemost. 2014;12:2–13.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Andrea Henrich for her assistance with the figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Schilling.

Ethics declarations

Funding

The studies involving selatogrel discussed in this review were funded by Idorsia Pharmaceuticals Ltd.

Conflict of interest

Uta Schilling is a full-time employee of Idorsia Pharmaceuticals Ltd. Mike Ufer and Jasper fDingemanse are full-time employees of Idorsia Pharmaceuticals Ltd and owners of stocks/ stock options. Selatogrel is currently in development by Idorsia Pharmaceuticals Ltd. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, U., Dingemanse, J. & Ufer, M. Pharmacokinetics and Pharmacodynamics of Approved and Investigational P2Y12 Receptor Antagonists. Clin Pharmacokinet 59, 545–566 (2020). https://doi.org/10.1007/s40262-020-00864-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00864-4

Navigation