Skip to main content
Log in

Clinical Significance of the Plasma Protein Binding of Rifampicin in the Treatment of Tuberculosis Patients

  • Commentary
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. World Health Organization. Treatment of tuberculosis guidelines, 4th ed. 2010. https://www.who.int/tb/publications/2010/9789241547833/en. Accessed 7 Dec 2018.

  2. Devaleenal DB, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017;10(1):47–58.

    Article  Google Scholar 

  3. Daskapan A, Idrus LR, Postma MJ, Wilffert B, Kosterink JGW, Stienstra Y, et al. A systematic review of the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–66.

    Article  CAS  Google Scholar 

  4. Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.

    Article  CAS  Google Scholar 

  5. Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.

    Article  CAS  Google Scholar 

  6. Satyaraddi A, Velpandian T, Sharma SK, Vishnubhatla S, Sharma A, Sirohiwal A, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis. 2014;18(2):188–95.

    Article  CAS  Google Scholar 

  7. Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2014;74(8):839–54.

    Article  CAS  Google Scholar 

  8. Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905–16.

    Article  CAS  Google Scholar 

  9. Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.

    Article  CAS  Google Scholar 

  10. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.

    Article  CAS  Google Scholar 

  11. Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.

    Article  CAS  Google Scholar 

  12. Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.

    Article  CAS  Google Scholar 

  13. te Brake LHM, Ruslami R, Later-Nijland H, Mooren F, Teulen M, Apriani L, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.

    Article  Google Scholar 

  14. Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein binding of first-line antituberculosis drugs. Antimicrob Agents Chemother. 2018;61(7):e00641–718.

    Google Scholar 

  15. Litjens CHC, Aarnoutse RA, van Ewijk-Beneken Kolmer EWJ, Svensson EM, Colbers A, Burger DM, et al. Protein binding of rifampicin is not saturated when using high-dose rifampicin. J Antimicrob Chemother. 2019;74(4):986–90.

    Article  Google Scholar 

  16. Buchanan N, Van Der Walt NA. The binding of antituberculous drugs to normal and Kwashiorkor serum. S Afr Med J. 1977;52(13):522–5.

    CAS  PubMed  Google Scholar 

  17. Johnson DA, Smith KD. The efficacy of certain anti-tuberculosis drugs is affected by binding to α-1-acid glycoprotein. Biomed Chromatogr. 2006;20(6–7):551–60.

    Article  CAS  Google Scholar 

  18. Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.

    Article  CAS  Google Scholar 

  19. Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res. 2018;36(2):30.

    Article  Google Scholar 

  20. Almeida MLD, Barbieri MA, Gurgel RQ, Abdurrahman ST, Baba UA, Hart CA, et al. α1-Acid glycoprotein and α1-antitrypsin as early markers of treatment response in patients receiving the intensive phase of tuberculosis therapy. Trans R Soc Trop Hyg. 2009;103(6):575–80.

    Article  CAS  Google Scholar 

  21. Dickinson JM, Aber VR, Allen BW, Ellard GA, Mitchison DA. Assay of rifampicin in serum. J Clin Pathol. 1974;27(2):457–62.

    Article  CAS  Google Scholar 

  22. Furesz S. Chemical and biological properties of rifampicin. Antibiot Chemother. 1970;16:316–51.

    Article  CAS  Google Scholar 

  23. Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;3(11):S301–8.

    CAS  PubMed  Google Scholar 

  24. Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–11.

    Article  CAS  Google Scholar 

  25. Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.

    Article  CAS  Google Scholar 

  26. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  CAS  Google Scholar 

  27. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.

    Article  CAS  Google Scholar 

  28. Antwi S, Yanh H, Enimil A, Sarfo AM, Gillani FS, Anong D, et al. Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. Antimicrob Agents Chemother. 2017;61(2):e01701–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokineics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guielines. Antimicrob Agents Chemother. 2016;60(4):2171–9.

    Article  CAS  Google Scholar 

  30. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.

    Article  CAS  Google Scholar 

  31. Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.

    Article  CAS  Google Scholar 

  32. Ramachandran G, Kumar AK, Bhavani PK, Kannan T, Kumar SR, Gangadevi NP, et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in india. Antimicrob Agents Chemother. 2015;59(2):1162–7.

    Article  CAS  Google Scholar 

  33. Ramachandran G, Kumar AK, Kannan T, Bhavani PK, Kumar SR, Gangadevi NP, et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J. 2016;35(5):530–4.

    Article  Google Scholar 

  34. Polasa K, Murthy KJR, Krishnaswamy K. Rifampicin kinetics in undernutrition. Br J Clin Pharmacol. 1984;17(4):481–4.

    Article  CAS  Google Scholar 

  35. Gumbo T, Louie A, Deziel MR, Liu W, Parson LM, Salfinger M, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.

    Article  CAS  Google Scholar 

  36. Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics–pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011;55(1):24–34.

    Article  CAS  Google Scholar 

  37. Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev. 2013;26(2):274–88.

    Article  CAS  Google Scholar 

  38. Leroux S, van den Anker JN, Smits A, Pfister M, Allegaert K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br J Clin Pharmacol. 2019;85(5):865–7.

    Article  Google Scholar 

  39. Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aernoutse RE, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.

    Article  CAS  Google Scholar 

  40. Egelund EF, Weiner M, Singh RP, Prihoda TJ, Gelfond JAL, Derendorf H, et al. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58(8):4904–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger K. Verbeeck.

Ethics declarations

Funding

No external funds were used in the preparation of this manuscript.

Conflict of interest

Roger K. Verbeeck, Bonifasius S. Singu, and Dan Kibuule declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbeeck, R.K., Singu, B.S. & Kibuule, D. Clinical Significance of the Plasma Protein Binding of Rifampicin in the Treatment of Tuberculosis Patients. Clin Pharmacokinet 58, 1511–1515 (2019). https://doi.org/10.1007/s40262-019-00800-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00800-1

Navigation