Skip to main content
Log in

Population Pharmacokinetic-Pharmacodynamic Modeling of Ropivacaine in Spinal Anesthesia

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Ropivacaine is frequently used in spinal anesthesia but the relationship between plasma concentrations and sensory block level remains unknown.

Objective

The aim of this study was to assess the relationship between plasma ropivacaine concentrations and effects during spinal anesthesia.

Methods

Sixty patients aged between 18 and 82 years were included in this study after providing written informed consent. Patients were randomly assigned to receive intrathecal administration of ropivacaine 15, 20 or 25 mg. Blood samples were drawn to determine ropivacaine concentrations, and sensory blockade was assessed using pinprick testing. Ropivacaine plasma concentrations and sensory block level were analyzed using a nonlinear mixed-effects modeling approach with Monolix 4.2.2. Uncertainty of parameters was estimated by bootstrapping.

Results

Overall, 216 plasma ropivacaine values and 407 sensory block-related data were available for pharmacokinetic-pharmacodynamic (PK-PD) model evaluation. A two-compartment open model connected to a spinal compartment was selected to describe the PKs of ropivacaine. Sensory block modeling was performed using a sigmoid E max model assuming an equilibration delay between the amount in the depot or spinal compartment and at the effect site. Using multiple linear regression analysis, we were able to demonstrate the importance of dose, age and weight as major predictors of sensory block-level kinetics.

Conclusions

This first population PK-PD model for ropivacaine in spinal anesthesia confirms the relationship between plasma ropivacaine concentrations and effect. We also clarify the relationship between the spread of sensory block level and dose, age and, for the first time, weight.

Study Registration

This study was approved by the Reims University Hospital Ethics Committee (protocol: PHRC-2005; registered at Agence Nationale de Sécurité du Médicament et des Produits de Santé ANSM: D60890). This was an open, prospective, monocentric study conducted in the University Hospital of Reims (France).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simpson D, Curran MP, Oldfield V, Keating GM. Ropivacaine: a review of its use in regional anaesthesia and acute pain management. Drugs. 2005;65:2675–717.

    Article  PubMed  CAS  Google Scholar 

  2. Thomas JM, Schug SA. Recent advances in the pharmacokinetics of local anaesthetics. Long-acting amide enantiomers and continuous infusions. Clin Pharmacokinet. 1999;36:67–83.

    Article  PubMed  CAS  Google Scholar 

  3. Greene NM. Distribution of local anesthetic solutions within the subarachnoid space. Anesth Analg. 1985;64:715–30.

    Article  PubMed  CAS  Google Scholar 

  4. Malinovsky JM, Charles F, Kick O, Lepage JY, Malinge M, Cozian A, et al. Intrathecal anesthesia: ropivacaine versus bupivacaine. Anesth Analg. 2000;91:1457–60.

    Article  PubMed  CAS  Google Scholar 

  5. Hocking G, Wildsmith JAW. Intrathecal drug spread. Br J Anaesth. 2004;93:568–78.

    Article  PubMed  CAS  Google Scholar 

  6. Khaw KS, Ngan Kee WD, Wong EL, Liu JY, Chung R. Spinal ropivacaine for cesarean section: a dose-finding study. Anesthesiology. 2001;95:1346–50.

    Article  PubMed  CAS  Google Scholar 

  7. Carpenter RL, Hogan QH, Liu SS, Crane B, Moore J. Lumbosacral cerebrospinal fluid volume is the primary determinant of sensory block extent and duration during spinal anesthesia. Anesthesiology. 1998;89:24–9.

    Article  PubMed  CAS  Google Scholar 

  8. Hogan QH, Prost R, Kulier A, Taylor ML, Liu S, Mark L. Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure. Anesthesiology. 1996;84:1341–9.

    Article  PubMed  CAS  Google Scholar 

  9. Djerada Z, Fournet-Fayard A, Gozalo C, Lelarge C, Lamiable D, Millart H, et al. Population pharmacokinetics of nefopam in elderly, with or without renal impairment, and its link to treatment response. Br J Clin Pharmacol. 2014;77:1027–38.

    Article  PubMed  CAS  Google Scholar 

  10. Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. 2nd ed. New York: Springer-Verlag New York Inc.; 2011.

    Book  Google Scholar 

  11. Gaudreault F. Pharmacométrie de la ropivacaïne suivant l’anesthésie locorégionale chez les patients orthopédiques: caractérisation de l’intensité et de la durée du bloc sensitif. . 2014. https://papyrus.bib.umontreal.ca/xmlui/handle/1866/10331. Accessed 31 Jul 2016.

  12. Ollier E, Heritier F, Bonnet C, Hodin S, Beauchesne B, Molliex S, et al. Population pharmacokinetic model of free and total ropivacaine after transversus abdominis plane nerve block in patients undergoing liver resection. Br J Clin Pharmacol. 2015;80:67–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gaudreault F, Drolet P, Fallaha M, Varin F. Modeling the anesthetic effect of ropivacaine after a femoral nerve block in orthopedic patients: a population pharmacokinetic-pharmacodynamic analysis. Anesthesiology. 2015;122:1010–20.

    Article  PubMed  CAS  Google Scholar 

  14. Gambús PL, Trocóniz IF. Pharmacokinetic-pharmacodynamic modelling in anaesthesia. Br J Clin Pharmacol. 2015;79:72–84.

    Article  PubMed  CAS  Google Scholar 

  15. Choquette A, Troncy E, Guillot M, Varin F, del Castillo JRE. Pharmacokinetics of lidocaine hydrochloride administered with or without adrenaline for the paravertebral brachial plexus block in dogs. PLoS One. 2017;12:e0169745.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hoizey G, Lamiable D, Robinet A, Ludot H, Malinovsky J-M, Kaltenbach ML, et al. Sensitive bioassay of bupivacaine in human plasma by liquid-chromatography-ion trap mass spectrometry. J Pharm Biomed Anal. 2005;39:587–92.

    Article  PubMed  CAS  Google Scholar 

  17. US Food and Drug Administration. Guidance for industry. Bioanalytical method validation; May 2001. http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf. Accessed 1 July 2010.

  18. Djerada Z, Feliu C, Tournois C, Vautier D, Binet L, Robinet A, et al. Validation of a fast method for quantitative analysis of elvitegravir, raltegravir, maraviroc, etravirine, tenofovir, boceprevir and 10 other antiretroviral agents in human plasma samples with a new UPLC-MS/MS technology. J Pharm Biomed Anal. 2013;86:100–11.

    Article  PubMed  CAS  Google Scholar 

  19. Djerada Z, Peyret H, Dukic S, Millart H. Extracellular NAADP affords cardioprotection against ischemia and reperfusion injury and involves the P2Y11-like receptor. Biochem Biophys Res Commun. 2013;434:428–33.

    Article  PubMed  CAS  Google Scholar 

  20. Lavielle M, Mentré F. Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J Pharmacokinet Pharmacodyn. 2007;34:229–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacomet Syst Pharmacol. 2013;2:e38.

    Article  CAS  Google Scholar 

  22. Lixoft. Documentation. http://www.lixoft.eu/monolix/documentation/. Accessed 3 June 2013.

  23. Lavielle M. Mixed effects models for the population approach: models, tasks, methods and tools. Boca Roton: CRC Press; 2014.

    Book  Google Scholar 

  24. Schnider TW, Minto CF, Bruckert H, Mandema JW. Population pharmacodynamic modeling and covariate detection for central neural blockade. Anesthesiology. 1996;85:502–12.

    Article  PubMed  CAS  Google Scholar 

  25. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20:511–28.

    Article  PubMed  CAS  Google Scholar 

  26. Wald A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc. 1943;54:426–82.

    Article  Google Scholar 

  27. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90:154–66.

    Article  PubMed  Google Scholar 

  28. Lavielle M, Ribba B. Enhanced method for diagnosing pharmacometric models: random sampling from conditional distributions. Pharm Res. 2016;33:2979–88.

    Article  PubMed  CAS  Google Scholar 

  29. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13:143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59:19–29.

    Article  PubMed  CAS  Google Scholar 

  31. Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol. 1997;37:486–95.

    Article  PubMed  CAS  Google Scholar 

  32. Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm. 1981;9:635–51.

    Article  PubMed  CAS  Google Scholar 

  33. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. 4th ed. Stockholm: Swedish Pharmaceutical Press; 2007.

    Google Scholar 

  34. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34:711–26.

    Article  PubMed  CAS  Google Scholar 

  35. Kopacz DJ, Emanuelsson BM, Thompson GE, Carpenter RL, Stephenson CA. Pharmacokinetics of ropivacaine and bupivacaine for bilateral intercostal blockade in healthy male volunteers. Anesthesiology. 1994;81:1139–48.

    Article  PubMed  CAS  Google Scholar 

  36. Simon MJG, Veering BT, Vletter AA, Stienstra R, van Kleef JW, Burm AGL. The effect of age on the systemic absorption and systemic disposition of ropivacaine after epidural administration. Anesth Analg. 2006;102:276–82.

    Article  PubMed  CAS  Google Scholar 

  37. Olofsen E, Burm AGL, Simon MJG, Veering BT, van Kleef JW, Dahan A. Population pharmacokinetic-pharmacodynamic modeling of epidural anesthesia. Anesthesiology. 2008;109:664–74.

    Article  PubMed  Google Scholar 

  38. Lee A, Fagan D, Lamont M, Tucker GT, Halldin M, Scott DB. Disposition kinetics of ropivacaine in humans. Anesth Analg. 1989;69:736–8.

    Article  PubMed  CAS  Google Scholar 

  39. Burm AG. Clinical pharmacokinetics of epidural and spinal anaesthesia. Clin Pharmacokinet. 1989;16:283–311.

    Article  PubMed  CAS  Google Scholar 

  40. Stanski DR. Pharmacodynamic modeling of anesthetic EEG drug effects. Annu Rev Pharmacol Toxicol. 1992;32:423–47.

    Article  PubMed  CAS  Google Scholar 

  41. Jeleazcov C, Lavielle M, Schüttler J, Ihmsen H. Pharmacodynamic response modelling of arterial blood pressure in adult volunteers during propofol anaesthesia. Br J Anaesth. 2015;115:213–26.

    Article  PubMed  CAS  Google Scholar 

  42. Ngan Kee WD, Ng FF, Khaw KS, Lee A, Gin T. Determination and comparison of graded dose-response curves for epidural bupivacaine and ropivacaine for analgesia in laboring nulliparous women. Anesthesiology. 2010;113:445–53.

    Article  PubMed  CAS  Google Scholar 

  43. Shafer SL, Eisenach JC, Hood DD, Tong C. Cerebrospinal fluid pharmacokinetics and pharmacodynamics of intrathecal neostigmine methylsulfate in humans. Anesthesiology. 1998;89:1074–88.

    Article  PubMed  CAS  Google Scholar 

  44. Jacobs JM, Love S. Qualitative and quantitative morphology of human sural nerve at different ages. Brain J Neurol. 1985;108(Pt 4):897–924.

    Article  Google Scholar 

  45. Dorfman LJ, Bosley TM. Age-related changes in peripheral and central nerve conduction in man. Neurology. 1979;29:38–44.

    Article  PubMed  CAS  Google Scholar 

  46. Cameron AE, Arnold RW, Ghorisa MW, Jamieson V. Spinal analgesia using bupivacaine 0.5% plain. Variation in the extent of the block with patient age. Anaesthesia. 1981;36:318–22.

    Article  PubMed  CAS  Google Scholar 

  47. Racle JP, Benkhadra A, Poy JY, Gleizal B. Spinal analgesia with hyperbaric bupivacaine: influence of age. Br J Anaesth. 1988;60:508–14.

    Article  PubMed  CAS  Google Scholar 

  48. Veering BT, Burm AG, Spierdijk J. Spinal anaesthesia with hyperbaric bupivacaine. Effects of age on neural blockade and pharmacokinetics. Br J Anaesth. 1988;60:187–94.

    Article  PubMed  CAS  Google Scholar 

  49. Hirabayashi Y, Shimizu R, Saitoh K, Fukuda H. Spread of subarachnoid hyperbaric amethocaine in adolescents. Br J Anaesth. 1995;74:41–5.

    Article  PubMed  CAS  Google Scholar 

  50. Sakura S, Imamachi N, Toyota K, Shono A, Saito Y. Spinal anesthesia with tetracaine in 7.5 or 0.75% glucose in adolescents and adults. Anesth Analg. 2001;93:77–81.

    Article  PubMed  CAS  Google Scholar 

  51. Ben-David B, Levin H, Solomon E, Admoni H, Vaida S. Spinal bupivacaine in ambulatory surgery: the effect of saline dilution. Anesth Analg. 1996;83:716–20.

    Article  PubMed  CAS  Google Scholar 

  52. Povey HM, Olsen PA, Pihl H, Jacobsen J. High dose spinal anaesthesia with glucose free 0.5% bupivacaine 25 and 30 mg. Acta Anaesthesiol Scand. 1995;39:457–61.

    Article  PubMed  CAS  Google Scholar 

  53. McDonald SB, Liu SS, Kopacz DJ, Stephenson CA. Hyperbaric spinal ropivacaine: a comparison to bupivacaine in volunteers. Anesthesiology. 1999;90:971–7.

    Article  PubMed  CAS  Google Scholar 

  54. De Simone CA, Leighton BL, Norris MC. Spinal anesthesia for cesarean delivery. A comparison of two doses of hyperbaric bupivacaine. Reg Anesth. 1995;20:90–4.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank medical staff who collected the data of the study. We thank laboratory staff of pharmacology that performed plasma determination. We thank Lixoft Company to provide us the academic user license. We thank Prof Nick Holford to provide us wings usable with Monolix software.

Author information

Authors and Affiliations

Authors

Contributions

Z.D. designed the study, study execution and data acquisition, developed and implemented the PK/PD models in MONOLIX, data analysis and interpretation, graphical representation, and wrote the first draft of the manuscript. C.F., Y.C., DG: data acquisition, data interpretation, graphical representation, and revised critically the manuscript for content and gave final approval to the manuscript version submitted for publication. F.S., P.G., B.C., O.F. performed the volunteer recruitment, data interpretation, and revised critically the manuscript for content and gave final approval to the manuscript version submitted for publication. J.J.M.: designed the study, study execution and data acquisition, performed recruitment, data analysis and interpretation, revised critically the manuscript for content and gave final approval to the manuscript version submitted for publication.

Corresponding author

Correspondence to Zoubir Djerada.

Ethics declarations

Funding

This study was funded by the Regional Clinical Research Program of Reims University Hospital, in 2004 (PHRC 2005).

Conflict of interest

Z.D., C.F., Y.C., D.G, F.S., P.G., B.C., O.F., J.J.M. declare no financial relationships with any organisations that might have an interest in the submitted work; no other relationships or activities that could appear to have influenced the submitted work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40262_2017_617_MOESM1_ESM.jpg

Electronic Supplementary Fig. 1 Diagnostic plots. Population (blue dot) or individual (black circle) weighted residuals (PWRES or IWRES) versus time of ropivacaine concentration (a) and sensory block level (b), PWRES or IWRES versus respective predictions of ropivacaine concentration (c) and sensory block level (d)

40262_2017_617_MOESM2_ESM.jpg

Electronic Supplementary Fig. 2 Diagnostic plots. Observed ropivacaine concentrations versus population-predicted ropivacaine concentrations (a). Observed sensory block level versus population-predicted sensory block level (b)

Supplementary material 3 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djerada, Z., Feliu, C., Cazaubon, Y. et al. Population Pharmacokinetic-Pharmacodynamic Modeling of Ropivacaine in Spinal Anesthesia. Clin Pharmacokinet 57, 1135–1147 (2018). https://doi.org/10.1007/s40262-017-0617-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0617-2

Navigation