Skip to main content
Log in

Effect of Age-Related Factors on the Pharmacokinetics of Lamotrigine and Potential Implications for Maintenance Dose Optimisation in Future Clinical Trials

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 20 July 2018

A Correction to this article was published on 25 April 2018

This article has been updated

Abstract

Background and Aims

In this study, we evaluate the performance of allometric concepts to predict the implications of age and size on the pharmacokinetics of lamotrigine, and assess the dose rationale across different age groups from 0.2 to 91 years.

Methods

An allometrically scaled pharmacokinetic model was developed using adolescent and adult data, taking into account the effect of comedications. Model parameters were then used to extrapolate lamotrigine pharmacokinetics to older adults (> 65 years), children (4–12 years) and infants and toddlers (0.2–2.0 years). In addition, simulations were performed to identify the implication of different doses and dosing regimens for each population, so as to ensure steady-state concentrations within a predefined reference range.

Results

The pharmacokinetics of lamotrigine was best described using a one-compartment model with first-order absorption and elimination. Carbamazepine, phenytoin, and valproic acid changed systemic clearance (CL) by + 76.5, + 129, and − 47.4%, respectively. Allometric principles allowed accurate extrapolation of disposition parameters to older adults and children older than 4 years of age. A maturation function was required to describe changes in exposure in younger patients. Compared with adults, a child aged 1.7 years has a 31.5% higher CL, after correcting for body weight. Patients > 65 years of age showed a decrease in CL of approximately 15%.

Conclusion

Population pharmacokinetic models are usually limited to a subgroup of patients, which may mask the identification of factors contributing to interindividual variability. The availability of an integrated model including the whole patient population provides insight into the role of age-related changes in the disposition of lamotrigine, and potential implications for maintenance dose optimisation in any future trials.

Trial Registration

According to GlaxoSmithKline’s Clinical Trial Register, data from the GlaxoSmithKline studies LAM100034 and LEP103944, corresponding to ClinicalTrials.gov identifiers NCT00113165 and NCT00264615, used in this work, have been used in previous publications (doi: https://doi.org/10.1212/01.wnl.0000277698.33743.8b, https://doi.org/10.1111/j.1528-1167.2007.01274.x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 25 April 2018

    Effect of Age-Related Factors on the Pharmacokinetics of Lamotrigine and Potential Implications for Dose Optimisation in Epilepsy Patients should read.

References

  1. Steiner TJ, Dellaportas CI, Findley LJ, Gross M, Gibberd FB, Perkin GD, Park DM, Abbott R. Lamotrigine monotherapy in newly diagnosed untreated epilepsy: a double-blind comparison with phenytoin. Epilepsia. 1999;40(5):601–7.

    Article  PubMed  CAS  Google Scholar 

  2. Mullens EL. Clinical experience with lamotrigine monotherapy in adults with newly diagnosed epilepsy: a review of published randomised clinical trials. Clin Drug Investig. 1998;16(2):125–33.

    Article  PubMed  CAS  Google Scholar 

  3. Fitton A, Goa KL. Lamotrigine: An update of its pharmacology and therapeutic use in epilepsy. Drugs. 1995;50(4):691–713.

    Article  PubMed  CAS  Google Scholar 

  4. Brodie MJ, Richens A, Yuen A, UK, Lamotrigine/Carbamazepine Monotherapy Trial Group. Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. Lancet. 1995;345(8948):476–9.

    Article  PubMed  CAS  Google Scholar 

  5. Italiano D, Perucca E. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update. Clin Pharmacokinet. 2013;52(8):627–45.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson GD, Saneto RP. Modified-release formulations of second-generation antiepileptic drugs: pharmacokinetic and clinical aspects. CNS Drugs. 2015;29(8):669–81.

    Article  PubMed  CAS  Google Scholar 

  7. Lovrić M, Božina N, Hajnšek S, Kuzman MR, Sporiš D, Lalić Z, et al. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther Drug Monit. 2012;34(5):518–25.

    Article  PubMed  CAS  Google Scholar 

  8. Landmark CJ, Baftiu A, Tysse I, Valsø B, Larsson PG, Rytter E, Johannessen SI. Pharmacokinetic variability of four newer antiepileptic drugs, lamotrigine, levetiracetam, oxcarbazepine, and topiramate. Ther Drug Monit. 2012;34(4):1.

    Article  CAS  Google Scholar 

  9. Ohman I, Vitols S, Tomson T. Lamotrigine in pregnancy: pharmacokinetics during delivery, in the neonate, and during lactation. Epilepsia. 2000;41(6):709–13.

    Article  PubMed  CAS  Google Scholar 

  10. Pennell PB, Peng L, Newport DJ, Ritchie JC, Koganti A, Holley DK, et al. Lamotrigine in pregnancy: clearance, therapeutic drug monitoring, and seizure frequency. Neurology. 2008;70(22):2130–6.

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Yang K, Choi S, Fischer JH, Jeong H. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos. 2009;37(9):1841–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fotopoulou C, Kretz R, Bauer S, Schefold JC, Schmitz B, Dudenhausen JW, et al. Prospectively assessed changes in lamotrigine-concentration in women with epilepsy during pregnancy, lactation and the neonatal period. Epilepsy Res. 2009;85(1):60–4.

    Article  PubMed  CAS  Google Scholar 

  13. Pirie DAJ, Al Wattar BH, Pirie AM, Houston V, Siddiqua A, Doug M, et al. Effects of monitoring strategies on seizures in pregnant women on lamotrigine: A meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;172(1):26–31.

    Article  PubMed  CAS  Google Scholar 

  14. Chen C. Validation of a population pharmacokinetic model for adjunctive lamotrigine therapy in children. Br J Clin Pharmacol. 2000;50(2):135–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gidal BE, Anderson GD, Rutecki PR, Shaw R, Lanning A. Lack of an effect of valproate concentration on lamotrigine pharmacokinetics in developmentally disabled patients with epilepsy. Epilepsy Res. 2000;42(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  16. Reimers A, Skogvoll E, Sund JK, Spigset O. Lamotrigine in children and adolescents: the impact of age on its serum concentrations and on the extent of drug interactions. Eur J Clin Pharmacol. 2007;63(7):687–92.

    Article  PubMed  CAS  Google Scholar 

  17. He D, Wang L, Qin J, Zhang S, Lu W, Li L, et al. Population pharmacokinetics of lamotrigine in Chinese children with epilepsy. Acta Pharmacol Sin. 2012;33(11):1417–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brzaković B, Vučićević K, Kovačević SV, Miljković B, Prostran M, Martinović Ž, et al. Pharmacokinetics of lamotrigine in paediatric and young adult epileptic patients–nonlinear mixed effects modelling approach. Eur J Clin Pharmacol. 2014;70(2):179–85.

    Article  PubMed  CAS  Google Scholar 

  19. Baldoni AO, Freitas-Lima P, de Santi Ferreira FI, Martinez EZ, Queiroz RHC, Sakamoto AC, et al. An investigation of the influence of patient-related factors and comedications on lamotrigine clearance in patients with epilepsy. Clin Exp Pharmacol Physiol. 2016;43(7):685–9.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z, Ji S, Han Y, Zang L, Wang Y. Population pharmacokinetic models of lamotrigine in different age groups of Chinese children with epilepsy. Eur J Clin Pharmacol. 2017;73:445–53.

    Article  PubMed  CAS  Google Scholar 

  21. Reimers A, Skogvoll E, Sund JK, Spigset O. Drug interactions between lamotrigine and psychoactive drugs: evidence from a therapeutic drug monitoring service. J Clin Psychopharmacol. 2005;25:342–8.

    Article  PubMed  CAS  Google Scholar 

  22. Lott R. Lamotrigine: treatment of epilepsy in the elderly. Consult Pharm. 2003;18(11):979–92.

    PubMed  Google Scholar 

  23. Punyawudho B, Ramsay RE, Macias FM, Rowan AJ, Collins JF, Brundage RC, et al. Population pharmacokinetics of lamotrigine in elderly patients. J Clin Pharmacol. 2008;48(4):455–63.

    Article  PubMed  CAS  Google Scholar 

  24. Polepally AR, Remmel RP, Brundage RC, Leppik IE, Rarick JO, Ramsay RE, et al. Steady-state pharmacokinetics and bioavailability of immediate-release and extended-release formulations of lamotrigine in elderly epilepsy patients: use of stable isotope methodology. J Clin Pharmacol. 2015;55(10):1101–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tomson T. Gender aspects of pharmacokinetics of new and old AEDs: pregnancy and breast-feeding. Ther Drug Monit. 2005;27:718–21.

    Article  PubMed  CAS  Google Scholar 

  26. Wegner I, Wilhelm AJ, Lambrechts DAJE, Sander JW, Lindhout D. Effect of oral contraceptives on lamotrigine levels depends on comedication. Acta Neurol Scand. 2014;129(6):393–8.

    Article  PubMed  CAS  Google Scholar 

  27. Wegner I, Wilhelm AJ, Sander JW, Lindhout D. The impact of age on lamotrigine and oxcarbazepine kinetics: a historical cohort study. Epilepsy Behav. 2013;29(1):217–21.

    Article  PubMed  Google Scholar 

  28. Mallaysamy S, Johnson MG, Rao PGM, Rajakannan T, Bathala L, Arumugam K, et al. Population pharmacokinetics of lamotrigine in Indian epileptic patients. Eur J Clin Pharmacol. 2013;69(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  29. Hussein Z, Posner J. Population pharmacokinetics of lamotrigine monotherapy in patients with epilepsy: retrospective analysis of routine monitoring data. Br J Clin Pharmacol. 1997;43(5):457–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chan V, Morris RG, Ilett KF, Tett SE. Population pharmacokinetics of lamotrigine. Ther Drug Monit. 2001;23(6):630–5.

    Article  PubMed  CAS  Google Scholar 

  31. Singkham N, Towanabut S, Lertkachatarn S, Punyawudho B. Influence of the UGT2B7-161C-T polymorphism on the population pharmacokinetics of lamotrigine in Thai patients. Eur J Clin Pharmacol. 2013;69(6):1285–91.

    Article  PubMed  CAS  Google Scholar 

  32. Holford N, Heo Y, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013;102(9):2941–52.

    Article  PubMed  CAS  Google Scholar 

  33. van Dijkman SC, Alvarez-Jimenez R, Danhof M, Della Pasqua O. Pharmacotherapy in pediatric epilepsy: from trial and error to rational drug and dose selection – a long way to go. Expert Opinion Drug Metab Toxicol. 2016;12(10):1143–56.

    Article  CAS  Google Scholar 

  34. Wolf P. Lamotrigine: preliminary clinical observations on pharmacokinetics and interactions with traditional antiepileptic drugs. J Epilepsy. 1992;5(2):73–9.

    Article  Google Scholar 

  35. Piña-Garza JE, Levisohn P, Gucuyener K, Mikati MA, Warnock CR, Conklin HS, et al. Adjunctive lamotrigine for partial seizures in patients aged 1 to 24 months. Neurology. 2008;70(22 Pt 2):2099–108.

    Article  PubMed  CAS  Google Scholar 

  36. Pellock JM, Carman WJ, Thyagarajan V, Daniels T, Morris DL, D’Cruz O. Efficacy of antiepileptic drugs in adults predicts efficacy in children: a systematic review. Neurology. 2012;79(14):1482–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bauer RJ. NONMEM user guide introduction to NONMEM 7.3.0. Hanover: ICON Development Solutions; 2014.

    Google Scholar 

  38. Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.

    Article  PubMed  Google Scholar 

  39. Keizer RJ, van Benten M, Beijnen JH, Schellens JHM, Huitema ADR. Piraña and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed. 2011;101(1):72–9.

    Article  PubMed  Google Scholar 

  40. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2:e50.

    Article  CAS  Google Scholar 

  41. R Development Core Team. R: a language and environment for statistical computing. Vienna: The R Foundation for Statistical Computing; 2011.

    Google Scholar 

  42. de Onis M, The WHO. Child growth standards. World Rev Nutr Diet. 2015;113:278–94.

    Article  PubMed  Google Scholar 

  43. Luscombe M, Owens B. Weight estimation in resuscitation: is the current formula still valid? Arch Dis Child. 2007;92(5):412–5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Patsalos PN, Berry DJ, Bourgeois BFD, Cloyd JC, Glauser TA, Johannessen SI, et al. Antiepileptic drugs—best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49(7):1239–76.

    Article  PubMed  CAS  Google Scholar 

  45. Liu L, Zhao L, Wang Q, Qiu F, Wu X, Ma Y. Influence of valproic acid concentration and polymorphism of UGT1A4∗3, UGT2B7 -161C > T and UGT2B7∗2 on serum concentration of lamotrigine in Chinese epileptic children. Eur J Clin Pharmacol. 2015;71(11):1341–7.

    Article  PubMed  CAS  Google Scholar 

  46. Milosheska D, Lorber B, Vovk T, Kastelic M, Dolžan V, Grabnar I. Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. Br J Clin Pharmacol. 2016;82:399–411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rivas N, Buelga DS, Elger CE, Santos-Borbujo J, Otero MJ, Domínguez-Gil A, et al. Population pharmacokinetics of lamotrigine with data from therapeutic drug monitoring in German and Spanish patients with epilepsy. Ther Drug Monit. 2008;30(4):483–9.

    PubMed  CAS  Google Scholar 

  48. Almeida AM, Falcão AC, Sales F, Baldeiras I, Rocha MJ, Caramona MM. Lamotrigine pharmacokinetic evaluation in epileptic patients submitted to VEEG monitoring. Eur J Clin Pharmacol. 2006;62(9):737–42.

    Article  PubMed  CAS  Google Scholar 

  49. Lardizabal DV, Morris HH, Hovinga CA, Mar Del Carreño M. Tolerability and pharmacokinetics of oral loading with lamotrigine in epilepsy monitoring units. Epilepsia. 2003;44(4):536–9.

    Article  PubMed  CAS  Google Scholar 

  50. Grasela TH, Fiedler-Kelly J, Cox E, Womble GP, Risner ME, Chen C. Population pharmacokinetics of lamotrigine adjunctive therapy in adults with epilepsy. Pharmacokinet Pharmacodyn. 1999;39(4):373–84.

    CAS  Google Scholar 

  51. Ramsay RE, Pellock JM, Garnett WR, Sanchez RM, Valakas AM, Wargin WA, et al. Pharmacokinetics and safety of lamotrigine (Lamictal) in patients with epilepsy. Epilepsy Res. 1991;10:191–200.

    Article  PubMed  CAS  Google Scholar 

  52. Anderson BJ, Holford NHG. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  53. Cella M, Knibbe C, de Wildt SN, Van Gerven J, Danhof M, Della Pasqua O. Scaling of pharmacokinetics across paediatric populations: the lack of interpolative power of allometric models. Br J Clin Pharmacol. 2012;74(3):525–35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Piana C, Danhof M, Della Pasqua O. Influence of covariate distribution on the predictive performance of pharmacokinetic models in paediatric research. Br J Clin Pharmacol. 2014;78(1):145–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Weintraub D, Buchsbaum R, Resor S, Hirsch L. Effect of antiepileptic drug comedication on lamotrigine clearance. Arch Neurol. 2005;62(9):1432–6.

    Article  PubMed  Google Scholar 

  56. Arif H, Svoronos A, Resor SR Jr, Buchsbaum R, Hirsch LJ. The effect of age and comedication on lamotrigine clearance, tolerability, and efficacy. Epilepsia. 2011;52(10):1905–13.

    Article  PubMed  CAS  Google Scholar 

  57. Kim H-J, Kim T-E, Joo EY, Seo D-W, Lee S-Y, Hong SB. Effect of comedication on lamotrigine clearance in Korean epilepsy patients. Clin Chim Acta. 2015;2014(438):269–73.

    Article  CAS  Google Scholar 

  58. Lamotrigine (Rx). Lamictal, Lamictal XR, Lamictal ODT: Dosing and uses. http://reference.medscape.com/drug/lamictal-lamotrigine-343012. Accessed 25 Sept 2017.

  59. Miyagi SJ, Collier AC. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos. 2007;35(9):1587–92.

    Article  PubMed  CAS  Google Scholar 

  60. Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002;50:259–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Krekels EHJ, Johnson TN, den Hoedt SM, Rostami-Hodjegan A, Danhof M, Tibboel D, et al. From pediatric covariate model to semiphysiological function for maturation: part II—sensitivity to physiological and physicochemical properties. CPT Pharmacomet Syst Pharmacol. 2012;1(10):e10.

    Article  CAS  Google Scholar 

  62. van Dijkman SC, Rauwé WM, Danhof M, Della Pasqua O. Pharmacokinetic interactions and dosing rationale for antiepileptic drugs in adults and children. Br J Clin Pharmacol. 2017;. https://doi.org/10.1111/bcp.13400 (Epub 16 Aug 2017).

    Article  PubMed  Google Scholar 

  63. van Dijkman SC, Wicha SG, Danhof M, Della Pasqua OE. Individualized dosing algorithms and therapeutic monitoring for antiepileptic drugs. Clin Pharmacol Ther. 2017;. https://doi.org/10.1002/cpt.777 (Epub 27 Jun 2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Khilit Shah for his assistance in retrieving the clinical study data, and Corine Visser for her editorial support.

Author information

Authors and Affiliations

Authors

Contributions

Sven van Dijkman, Nico de Jager and Willem Rauwé performed the data analysis; Sven van Dijkman and Oscar Della Pasqua wrote the manuscript; and Meindert Danhof and Oscar Della Pasqua coordinated the investigations and reviewed the manuscript.

Corresponding author

Correspondence to Oscar Della Pasqua.

Ethics declarations

Conflict of Interest

Sven van Dijkman had support from the Global Research in Paediatrics consortium (GRiP). In addition to his role in GRiP, Oscar Della Pasqua is also Senior Director, Clinical Pharmacology, at GlaxoSmithKline. Nico C. B. de Jager, Willem M. Rauwé and Meindert Danhof declare no conflicts of interest.

Ethical Approval

The research presented in this paper was based on already existing data. The data used were derived from clinical trials performed by GlaxoSmithKline, which were all performed according to the Declaration of Helsinki and any additional ethical and practical standards applicable at the local trial sites.

Funding

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant agreement no. 261060.

Additional information

The original version of this article was revised as per the corrections listed in the following: https://doi.org/10.1007/s40262-018-0660-7.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dijkman, S.C., de Jager, N.C.B., Rauwé, W.M. et al. Effect of Age-Related Factors on the Pharmacokinetics of Lamotrigine and Potential Implications for Maintenance Dose Optimisation in Future Clinical Trials. Clin Pharmacokinet 57, 1039–1053 (2018). https://doi.org/10.1007/s40262-017-0614-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0614-5

Navigation