Skip to main content
Log in

Prediction of Free from Total Mycophenolic Acid Concentrations in Stable Renal Transplant Patients: A Population-Based Approach

Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

A population pharmacokinetic (PK) protein-binding model was developed to (1) predict free mycophenolic acid (fMPA) based on total MPA (tMPA) concentrations in renal transplant patients, to establish the therapeutic range of fMPA through pharmacokinetic-pharmacodynamic studies; and (2) provide a guideline for dosing mycophenolate mofetil (MMF).

Methods

Full PK profiles of 56 patients (from five different occasions) during the first year after transplantation who were treated with oral MMF and cyclosporine, or macrolides (either tacrolimus or sirolimus), were analysed. fMPA protein-binding was modelled using nonlinear mixed effects modelling (NONMEM). The influence of physiological factors and coadministered immunosupressant was studied.

Results

A two-compartment model with first-order absorption and elimination, linear protein binding and enterohepatic circulation (EHC) best described the PK of MPA. Different recycling rate constants were considered depending on the coadministered immunosuppressant. The protein-binding rate constant (KB [relative standard error, RSE%]) increased nonlinearly with renal function according to K B = 43.1 (3.13)·(CLCR/59.51)0.394(10.66) h−1. Furthermore, fMPA plasma clearance, given by clearance of the free mycophenolic acid (CLfMPA), CLfMPA = 410 (RSE%3.00)·(1+CsA·0.594 (22.39)) L/h, was 59.4% greater in cyclosporine-treated patients than in macrolide-treated patients, leading to lower MPA exposures. External evaluation proved acceptable area under the plasma concentration-time curve and trough concentration predictions.

Conclusions

A reliable protein-binding population PK model was developed for prediction of fMPA or tMPA from each other and for dose guiding in stable renal transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Wu JC. Mycophenolate mofetil: Molecular mechanisms of action. Persp Drug Disc and Design. 1994;2:185–204.

    Article  CAS  Google Scholar 

  2. Grailer A, Nichols J, Hullett D, Sollinger HW, Burlingham WJ. Inhibition of human B cell responses in vitro by RS-61443, cyclosporine A and DAB486 IL-2. Transpl Proc. 1991;23:314–5.

    CAS  Google Scholar 

  3. Eugui EM, Mirkovich A, Allison AC. Lymphocyte-selective antiproliferative and immunosuppresive activity of mycophenolic acid and its morpholinoethyl ester (RS-61443) in rodents. Transpl Proc. 1991;23(2):15–8.

    CAS  Google Scholar 

  4. van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int. 2015;28(5):508–15.

    Article  PubMed  CAS  Google Scholar 

  5. Bullingham RES, Nicholls AJ, Hale M. Pharmacokinetics of mycophenolate mofetil (RS 61443): A short review. Transpl Proc. 1996;28:925–9.

    CAS  Google Scholar 

  6. Bullingham RES, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429–55.

    Article  PubMed  CAS  Google Scholar 

  7. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):14–58.

    Article  Google Scholar 

  8. Van Hest RM, Mathot RA, Pescovitz MD, Gordon R, Mamelok RD, van Gelder T, et al. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: A population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17:871–80.

    Article  PubMed  CAS  Google Scholar 

  9. Van Hest RM, Van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem. 1995;41(7):1011–7.

    PubMed  CAS  Google Scholar 

  11. Picard N, Ratanasavanh D. Premaud, Le Meur Y, Marquet P. Identification of UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33:139–46.

    Article  PubMed  CAS  Google Scholar 

  12. Westley IS, Brogan LR, Morris RG, Evans AM, Sallustio BC. Role of MRP2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos. 2006;34:261–6.

    Article  PubMed  CAS  Google Scholar 

  13. Naesens M, De Loor H, Vanrenterghem Y, Kuypers DR. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation. 2007;84(3):362–73.

    Article  PubMed  CAS  Google Scholar 

  14. van Gelder T, Silva HT, de Fijter Budde K, Kuypers D, Mamelok RD, Armstrong VW, et al. How delayed graft function impacts exposure to mycophenolic acid in patients after renal transplantation. Ther Drug Monit. 2011;33(2):155–64.

    PubMed  Google Scholar 

  15. Lloberas N, Torras J, Cruzado JM, Andreu F, Oppenheimer F, Sánchez-Plumed J, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients. Results of the pharmacogenomic substudy within the Symphony study. Nephrol Dial Transpl. 2011;26(11):3784–93.

    Article  CAS  Google Scholar 

  16. Hesselink DA, Van Gelder T. Genetic and non genetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin Pharmacol Ther. 2005;78(4):317–21.

    Article  PubMed  CAS  Google Scholar 

  17. Kuypers RJ, Naesens M, Vermeire S, Vanrenterghem Y. The impact of uridine diphosphate-glucuronosyltransferase 1A9(UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther. 2005;78(4):351–61.

    Article  PubMed  CAS  Google Scholar 

  18. Levesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9 and UGT2B7 genetic polymorphisms on the Pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther. 2007;81(3):393–400.

    Article  CAS  Google Scholar 

  19. van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, Budde K, et al. UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther. 2009;86(3):319–27.

    Article  PubMed  CAS  Google Scholar 

  20. Van Gelder T, Klupp J, Barten MJ, Christians U, Christians U, Morris RE. Co-administration of tacrolimus and mycophenolate mofetil does not increase mycophenolic acid (MPA) exposure, but co-administration of cyclosporine inhibits the enterohepatic recirculation of MPA, thereby decreasing its exposure. J Heart Lung Transpl. 2001;20:160–1.

    Article  Google Scholar 

  21. Van Gelder T, Klupp J, Barten MJ, Christians U, Morris RE. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit. 2001;23:119–28.

    Article  PubMed  Google Scholar 

  22. Kobayashi M, Saitoh H, Kobayashi M, Tadano K, Takahashi Y, Hirano T. Cyclosporin A but not tacrolimus inhibits the biliary excretion of mycophenlic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther. 2004;309:1029–35.

    Article  PubMed  CAS  Google Scholar 

  23. Hesselink DA, Van Hest RM, Mathot RA, Bonthuis F, Weimar W, de Bruin RW, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the resistance-associated protein 2. Am J Transpl. 2005;5:987–94.

    Article  CAS  Google Scholar 

  24. Zucker K, Rosen A, Tsaroucha A, de Faria L, Roth D, Ciancio G, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol. 1997;5:225–32.

    Article  PubMed  CAS  Google Scholar 

  25. Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycohenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002;62:1060–7.

    Article  PubMed  CAS  Google Scholar 

  26. Pou L, Brunet M, Cantarell C, Vidal E, Oppenheimer F, Monforte V, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit. 2001;23:35–8.

    Article  PubMed  CAS  Google Scholar 

  27. Benichou AS, Blanchet B, Conti F, Hornecker M, Bernard D, Taieb F, et al. Variability in free mycophenolic acid exposure in adult liver transplant recipients during the early posttransplant period. J Clin Pharmacol. 2010;50:1202–10.

    Article  PubMed  Google Scholar 

  28. Weber LT, Shipkova M, Lamersdorf T, Niedmann PD, Wiesel M, Mandelbaum A, et al. Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. J Am Soc Nephrol. 1998;9:1511–20.

    PubMed  CAS  Google Scholar 

  29. Weber LT, Shipkova M, Armstrong VW, Wagner N, Schütz E, Mehls O, et al. Pharmacokinetic-pharmacodyanmic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German group on mycophenolate mofetil therapy. J Am Soc Nephrol. 2002;13:759–68.

    Article  PubMed  Google Scholar 

  30. Mino Y, Naito T, Otsuka A, Takayama T, Ozono S, Kagawa Y, et al. Cyclosporine alters correlation between free and total mycophenolic acid in kidney transplant recipients in the initial phase. J Clin Pharm Ther. 2011;36:217–24.

    Article  PubMed  CAS  Google Scholar 

  31. Hale MD, Nicholls AJ, Bullingham RE, Hené R, Hoitsma A, Squifflet JP, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther. 1998;64:672–83.

    Article  PubMed  CAS  Google Scholar 

  32. Van Gelder T, Hilbrands LB, Vanrenterghem Y, Weimar W, de Fijter JW, Squifflet JP, et al. A randomised double blind, multicenter plasma concentration study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation. 1999;68:261–6.

    Article  PubMed  Google Scholar 

  33. Shaw LM, Holt DW, Oellerich M, Meiser B, van Gelder T. Current issues in therapeutic drug monitoring of mycophenolic acid: report of roundtable discussion. Ther Drug Monit. 2001;23:305–15.

    Article  PubMed  CAS  Google Scholar 

  34. Le Meur Y, Borrows R, Pescovitz MD, Budde K, Grinyo J, Bloom R, et al. Therapeutic drug monitoring of mycophenolate in kidney transplantation: report of the transplantation society consensus meeting. Transpl Rev. 2001;25:28–64.

    Google Scholar 

  35. Van Hest RM, Van Gelder T, Vulto AG, Shaw LM, Mathot RA. Pharmacokinetic modelling of the plasma protein binding of mycophenolic acid in renal trasnplant recipients. Clin Pharmacokinet. 2009;48(7):464–76.

    Google Scholar 

  36. de Winter BC, Van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite n renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Grinyó JM, Ekberg H, Mamelok RD, et al. The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard-dose or low dose cyclosporine, low dose tacrolimus or low-dose sirolimus: the Symphony pharmacokinetic substudy. Nephrol Dial Transpl. 2009;24:2269–76.

    Article  CAS  Google Scholar 

  38. Brunet M, Cirera I, Martorell J, Vidal E, Millán O, Jiménez O, et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. Transplantation. 2006;81(4):541–6.

    Article  PubMed  CAS  Google Scholar 

  39. Langers P, Press RR, Inderson A, Cremers SC, den Hartigh J, Baranski AG, et al. Limited sampling model for advanced mycophenolic acid therapeutic drug monitoring after liver transplantation. Ther Drug Monit. 2014;36(2):141–7.

    Article  PubMed  CAS  Google Scholar 

  40. Bowalgaha K, Miners JO. The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. Br J Clin Pharmacol. 2001;52:605–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brunet M, Campistol JM, Diekmann F, Guillen D, Millán O. T cell function monitoring in stable renal transplant patients treated with sirolimus monotherapy. Mol Diagn Ther. 2007;11(4):247–56.

    Article  PubMed  CAS  Google Scholar 

  42. Bauer R. NONMEM user’s guide. Ellicott City: Icon Development Solutions; 2011.

    Google Scholar 

  43. Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Meth Programs Biomed. 1999;58(1):51–64.

    Article  CAS  Google Scholar 

  44. Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Meth Programs Biomed. 2005;79(3):241–57.

  45. Certara LP. Phoenix 6.3.0.395. WinNonlin® Copyright © 1998–2012.

  46. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34:711–26.

    Article  PubMed  CAS  Google Scholar 

  47. Picard-Hagen N, Gayrard V, Alvinerie M, Smeyers H, Ricou R, Bousquet-Melou A, et al. A nonlabeled method to evaluate cortisol production rate by modelling plasma CBG-free cortisol disposition. Am J Physiol Endocrinol Metab. 2001;281:E946–56.

    Article  PubMed  CAS  Google Scholar 

  48. Colom H, Lloberas N, Andreu F, Caldés A, et al. Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in renal transplant recipients. Kidney International. 2014;86(6):1434–43.

    Article  CAS  Google Scholar 

  49. Sherwin CMT, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sherwin CMT, Sagcal-Gironella ACP, Fukuda T, Brunner HI, Vinks AA. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Br J Clin Pharmacol. 2012;73(5):727–40.

    Article  PubMed  CAS  Google Scholar 

  51. Jiao Z, Ding JJ, Shen J, Liang HQ, Zhong LJ, Wang Y, et al. Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9. Br J Clin Pharmacol. 2008;65(6):893–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Musuamba FT, Rousseau A, Bosmans JL, Senessael JJ, Cumps J, Marquet P, et al. Limited sampling models and Bayesian estimation for mycophenolic acid area under the curve prediction in stable renal transplant patients co-medicated with cyclosporin or sirolimus. Clin Pharmacokinet. 2009;48:745–58.

    Article  PubMed  CAS  Google Scholar 

  53. Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993;21:735–50.

    Article  PubMed  CAS  Google Scholar 

  54. Yamaoka T, Nakagawa T, Uno T. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetics equations. J Pharmacokinet Biopharm. 1978;6(2):165–75.

    Article  PubMed  CAS  Google Scholar 

  55. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  PubMed  CAS  Google Scholar 

  56. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holford N. The visual predictive check—superiority to Standard diagnostic (Rorschach) plots. Abstract 738. Pamplona, Spain 2005. p. 14.

  58. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yano Y, Beal S, Sheiner LB. Evaluating pharmacokinetic-pharmacodynamic models using the posterior predictive check. J Pharmacokinet Biopharm. 2001;28(2):171–92.

    Article  CAS  Google Scholar 

  60. Sheiner LB, Beal SL. Some suggestions measuring predictive performance. J Pharmacokinet Biopharm. 1981;9:503–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Nuria Lloberas is a researcher from ISCIII Miguel Servet (CP06/00067) and REDinREN RD12/0021/003. This study was supported by grants from the Instituto de Salud Carlos III and Ministerio de Sanidad y Consumo (PI12/01564 and PI15/00871), and co-funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Lloberas.

Ethics declarations

Conflict of interest

Helena Colom, Franc Andreu, Teun van Gelder, Dennis A. Hesselink, Brenda C.M. de Winter, Oriol Bestard, Joan Torras, Josep M. Cruzado, Josep M. Grinyó, and Núria Lloberas have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colom, H., Andreu, F., van Gelder, T. et al. Prediction of Free from Total Mycophenolic Acid Concentrations in Stable Renal Transplant Patients: A Population-Based Approach. Clin Pharmacokinet 57, 877–893 (2018). https://doi.org/10.1007/s40262-017-0603-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0603-8

Navigation