Clinical Pharmacokinetics

, Volume 57, Issue 3, pp 297–313 | Cite as

The Clinical Pharmacology of Elotuzumab

  • Chaitali Passey
  • Jennifer Sheng
  • Johanna Mora
  • Amol Tendolkar
  • Michael Robbins
  • Robert Dodge
  • Amit Roy
  • Akintunde Bello
  • Manish Gupta
Review Article


Novel treatment options are needed to improve long-term outcomes for patients with multiple myeloma (MM). In this article, we comprehensively review the clinical pharmacology of elotuzumab, a first-in-class monoclonal anti-SLAMF7 antibody approved in combination with lenalidomide and dexamethasone (ELd) for the treatment of patients with MM and one to three prior therapies. Elotuzumab has a dual mechanism of action to specifically kill myeloma cells: binding SLAMF7 on myeloma cells facilitates natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), and direct engagement of SLAMF7 on NK cells further enhances NK cell activity. Elotuzumab administration causes transient elevations of selected cytokines (tumor necrosis factor-α, interferon-γ-induced protein-10 and monocyte chemoattractant protein-1). The temporary nature of these elevations (greatest after the first dose, with a trend to return to baseline by day 7) suggests a low likelihood of facilitating clinically meaningful drug–drug interactions. Elotuzumab exposure increases more than proportionally to dose and >80% SLAMF7 receptor occupancy is achieved with the approved elotuzumab 10 mg/kg regimen. Population pharmacokinetic data from 375 patients demonstrated weight-based dosing is appropriate for elotuzumab, and that ethnicity and hepatic/renal function have minimal effects on exposure. Exposure–response analysis of patients treated with ELd demonstrated that increased elotuzumab exposure does not elevate the risk of grade 3+ adverse events (AEs) or AEs leading to discontinuation/death. Elotuzumab antidrug antibodies occurred in 18.5% of patients treated with ELd or elotuzumab plus bortezomib and dexamethasone, but were generally transient and did not affect elotuzumab efficacy or safety. A monotherapy study indicated elotuzumab does not have clinically relevant effects on QT intervals.



PK and immunogenicity analyses were performed at Covance (formerly Tandem Labs) with oversight by Debbie Hilliard and Tonya Felix, including a significant contribution from Linda Zislin and Pathanjali Kadiyala. NAb assessments were performed at Bristol-Myers Squibb by Marina Juhel and Mike Sank.

Compliance with Ethical Standards


Elotuzumab was developed in a partnership between Bristol-Myers Squibb and AbbVie Biotherapeutics, who funded the studies described in this review. Medical writing assistance was provided by Matthew Thomas, PhD, Caudex, Oxford, UK, and funded by Bristol-Myers Squibb.

Conflict of interest

Chaitali Passey, Jennifer Sheng, Johanna Mora, Amol Tendolkar, Michael Robbins, Robert Dodge, Amit Roy, Akintunde Bello, and Manish Gupta are employees of Bristol-Myers Squibb (Princeton, NJ, USA). Manish Gupta and Chaitali Passey own stocks in Bristol-Myers Squibb; Johanna Mora, Michael Robbins and Amol Tendolkar hold stock options and/or bond holdings in Bristol-Myers Squibb.


  1. 1.
    Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Laubach JP, Voorhees PM, Hassoun H, et al. Current strategies for treatment of relapsed/refractory multiple myeloma. Expert Rev Hematol. 2014;7(1):97–111.CrossRefPubMedGoogle Scholar
  3. 3.
    Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cruz-Munoz ME, Dong Z, Shi X, et al. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol. 2009;10(3):297–305.CrossRefPubMedGoogle Scholar
  6. 6.
    Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Dimopoulos MA, Lonial S, White D, et al. Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth. Br J Haematol. 2017. doi: 10.1111/bjh.14787.
  9. 9.
    Bristol-Myers Squibb. Empliciti (elotuzumab) prescribing information. 2015. Accessed 5 May 2016.
  10. 10.
    European Medicines Agency. Elotuzumab: Summary of product characteristics. 2016. Accessed 26 May 2016.
  11. 11.
    Bristol-Myers Squibb K.K. Notice of marketing approval. 2017. Accessed 4 Jan 2017.
  12. 12.
    Zonder JA, Mohrbacher AF, Singhal S, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9.CrossRefPubMedGoogle Scholar
  15. 15. Japanese study of (BMS-901608) (elotuzumab) in combination with lenalidomide and low dose dexamethasone. 2015. Accessed 4 Mar 2016.
  16. 16.
    Berdeja J, Jagannath S, Zonder J, et al. Pharmacokinetics and safety of elotuzumab in combination with lenalidomide and dexamethasone in patients with multiple myeloma and various levels of renal impairment: results of a phase 1b study. Clin Lymphoma Myeloma Leuk. 2016;16(3):129–38.CrossRefPubMedGoogle Scholar
  17. 17.
    Jakubowiak A, Offidani M, Pegourie B, et al. Randomized phase 2 study of elotuzumab plus bortezomib/dexamethasone (Bd) versus Bd for relapsed/refractory multiple myeloma. Blood. 2016;127(23):2833–40.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18. Biomarker study of elotuzumab in high risk smoldering myeloma. 2015. Accessed 25 Apr 2016.
  19. 19.
    Postelnek J, Sheridan J, Keller S, et al. Effects of elotuzumab on soluble SLAMF7 levels in multiple myeloma. Blood. 2015;126(23):2964.Google Scholar
  20. 20.
    Bouchon A, Cella M, Grierson HL, et al. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167(10):5517–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Jenkins M, Canfield R, Robbins M, et al. Targeting mechanisms for natural killer cell dysfunction in patients with multiple myeloma. Blood. 2015;126(23):4237.Google Scholar
  22. 22.
    Deshmane SL, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dufour JH, Dziejman M, Liu MT, et al. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol. 2002;168(7):3195–204.CrossRefPubMedGoogle Scholar
  24. 24.
    Balasa B, Yun R, Belmar NA, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-alpha pathways. Cancer Immunol Immunother. 2015;64(1):61–73.CrossRefPubMedGoogle Scholar
  25. 25.
    Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Keizer RJ, Huitema AD, Schellens JH, et al. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.CrossRefPubMedGoogle Scholar
  28. 28.
    Richardson PG, Jagannath S, Moreau P, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose-escalation study. Lancet Haematol. 2015;2(12):e516–27.CrossRefPubMedGoogle Scholar
  29. 29.
    Gibiansky L, Passey C, Roy A, et al. Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma. J Pharmacokinet Pharmacodyn. 2016;43(3):243–57.CrossRefPubMedGoogle Scholar
  30. 30.
    Passey C, Gibiansky L, Mora J, et al. Effect of dexamethasone co-administration on the pharmacokinetics and immunogenicity of elotuzumab. Clin Pharmacol Ther. 2016;99(Suppl 1):S86.Google Scholar
  31. 31.
    Fasanmade AA, Adedokun OJ, Ford J, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Passey C, Gibiansky L, Sheng J, et al. Exposure response analysis of safety of elotuzumab in patients with multiple myeloma. J Pharmacokinet Pharmacodyn. 2016;43(Suppl 1):11 (T-81).Google Scholar
  33. 33.
    Wang Y, Booth B, Rahman A, et al. Toward greater insights on pharmacokinetics and exposure-response relationships for therapeutic biologics in oncology drug development. Clin Pharmacol Ther. 2017;101(5):582–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Kenny JR, Liu MM, Chow AT, et al. Therapeutic protein drug–drug interactions: navigating the knowledge gaps-highlights from the 2012 AAPS NBC Roundtable and IQ Consortium/FDA workshop. AAPS J. 2013;15(4):933–40.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lee JI, Zhang L, Men AY, et al. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.CrossRefPubMedGoogle Scholar
  36. 36.
    Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Kuus-Reichel K, Grauer LS, Karavodin LM, et al. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol. 1994;1(4):365–72.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wolbink GJ, Aarden LA, Dijkmans BA. Dealing with immunogenicity of biologicals: assessment and clinical relevance. Curr Opin Rheumatol. 2009;21(3):211–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Yanai H, Hanauer SB. Assessing response and loss of response to biological therapies in IBD. Am J Gastroenterol. 2011;106(4):685–98.CrossRefPubMedGoogle Scholar
  40. 40.
    Passey C, Mora J, Dodge R, et al. An integrated assessment of the effects of immunogenicity on the pharmacokinetics, safety, and efficacy of elotuzumab. AAPS J. 2017;19(2):557–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Food and Drug Administration. Guidance for Industry. E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. 2005. Accessed 2 June 2016.
  42. 42.
    Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89(11):1363–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rodriguez I, Erdman A, Padhi D, et al. Electrocardiographic assessment for therapeutic proteins: scientific discussion. Am Heart J. 2010;160(4):627–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Passey C, Darbenzio R, Jou Y-M, et al. Effects of elotuzumab on QT interval and cardiac safety in patients with multiple myeloma. Cancer Chemother Pharmacol. 2016;78(6):1237–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chaitali Passey
    • 1
  • Jennifer Sheng
    • 1
  • Johanna Mora
    • 1
  • Amol Tendolkar
    • 1
  • Michael Robbins
    • 1
  • Robert Dodge
    • 1
  • Amit Roy
    • 1
  • Akintunde Bello
    • 1
  • Manish Gupta
    • 1
  1. 1.Clinical Pharmacology and PharmacometricsBristol-Myers SquibbPrincetonUSA

Personalised recommendations