Skip to main content
Log in

Intracellular Pharmacokinetics of Antibacterials and Their Clinical Implications

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The intracellular pharmacokinetics of the different classes of antimicrobials into surrogate markers of tissue accumulation (alveolar macrophages and/or total alveolar cells collected by means of bronchoalveolar lavage or peripheral white blood cells) was reviewed. The aim of this review was to discuss the clinical implications of the intracellular pharmacokinetics of antibacterials, either from the therapeutic or toxicological perspective. The different pharmacokinetic behaviour of antimicrobials within cells is mainly related to their physicochemical properties (hydrophilicity and lipophilicity), and may have several clinical implications. Therapeutic efficacy against intracellular pathogens has been correlated mainly with the intracellular concentrations achieved by the different antimicrobial agents. This is relevant especially for macrolides, tetracyclines, fluoroquinolones and rifampicin in the treatment of bacterial infections such as Legionella pneumophila pneumonia, Mycoplasma pneumoniae pneumonia, non-gonococcal urethritis and chronic staphylococcal infections. Additionally, intracellular accumulation of antibacterials was correlated with the possibility of causing organ-specific toxicity, as in the case of aminoglycosides in regard to the risk of nephrotoxicity. Finally, it should be kept in mind that intracellular accumulation may also represent a drug reservoir in the case of lipophilic antimicrobials. This may become extremely relevant from the clinical standpoint when treating critically ill patients with sepsis with antibacterials. The pathophysiology of sepsis may explain why it is necessary to start therapy with an increased loading dose of hydrophilic antimicrobials to promptly achieve therapeutically effective concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44(10):1009–34.

    Article  CAS  PubMed  Google Scholar 

  2. Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokinetic-pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin Infect Dis. 2006;42(12):1764–71.

    Article  CAS  PubMed  Google Scholar 

  3. Van Bambeke F, Barcia-Macay M, Lemaire S, Tulkens PM. Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Devel. 2006;9(2):218–30.

    PubMed  Google Scholar 

  4. Prayle A, Watson A, Fortnum H, Smyth A. Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis. Thorax. 2010;65(7):654–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin N Am. 2003;17(3):615–34.

    Article  Google Scholar 

  6. Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8(1):5–12.

    CAS  PubMed  Google Scholar 

  7. Rodvold KA, Danziger LH, Gotfried MH. Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults. Antimicrob Agents Chemother. 2003;47(8):2450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Capitano B, Mattoes HM, Shore E, O’Brien A, Braman S, Sutherland C, et al. Steady-state intrapulmonary concentrations of moxifloxacin, levofloxacin, and azithromycin in older adults. Chest. 2004;125(3):965–73.

    Article  CAS  PubMed  Google Scholar 

  9. Conte JE Jr, Golden JA, McIver M, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects. Int J Antimicrob Agents. 2006;28(2):114–21.

    Article  CAS  PubMed  Google Scholar 

  10. Nicolau DP, Sutherland C, Winget D, Baughman RP. Bronchopulmonary pharmacokinetic and pharmacodynamic profiles of levofloxacin 750 mg once daily in adults undergoing treatment for acute exacerbation of chronic bronchitis. Pulm Pharmacol Ther. 2012;25(1):94–8.

    Article  CAS  PubMed  Google Scholar 

  11. Schuler P, Zemper K, Borner K, Koeppe P, Schaberg T, Lode H. Penetration of sparfloxacin and ciprofloxacin into alveolar macrophages, epithelial lining fluid, and polymorphonuclear leucocytes. Eur Respir J. 1997;10(5):1130–6.

    Article  CAS  PubMed  Google Scholar 

  12. Rodvold KA, Gotfried MH, Danziger LH, Servi RJ. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. Antimicrob Agents Chemother. 1997;41(6):1399–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Olsen KM, San Pedro G, Gann LP, Gubbins PO, Halinski DM, Campbell GD Jr. Intrapulmonary pharmacokinetics of azithromycin in healthy volunteers given five oral doses. Antimicrob Agents Chemother. 1996;40(11):2582–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Conte JE Jr, Golden JA, Duncan S, McKenna E, Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother. 1995;39(2):334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conte JE Jr, Golden J, Duncan S, McKenna E, Lin E, Zurlinden E. Single-dose intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime in volunteer subjects. Antimicrob Agents Chemother. 1996;40(7):1617–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Muller-Serieys C, Soler P, Cantalloube C, Lemaitre F, Gia HP, Brunner F, et al. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob Agents Chemother. 2001;45(11):3104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ong CT, Dandekar PK, Sutherland C, Nightingale CH, Nicolau DP. Intrapulmonary concentrations of telithromycin: clinical implications for respiratory tract infections due to Streptococcus pneumoniae. Chemotherapy. 2005;51(6):339–46.

    Article  CAS  PubMed  Google Scholar 

  18. Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, Kuti JL, et al. Pulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteers. Antimicrob Agents Chemother. 2012;56(5):2627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conte JE Jr, Golden JA, Kipps J, Zurlinden E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother. 2002;46(5):1475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Honeybourne D, Tobin C, Jevons G, Andrews J, Wise R. Intrapulmonary penetration of linezolid. J Antimicrob Chemother. 2003;51(6):1431–4.

    Article  CAS  PubMed  Google Scholar 

  21. Ziglam HM, Baldwin DR, Daniels I, Andrew JM, Finch RG. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother. 2002;50(6):1011–5.

    Article  CAS  PubMed  Google Scholar 

  22. Conte JE Jr, Golden JA, Kelly MG, Zurlinden E. Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline. Int J Antimicrob Agents. 2005;25(6):523–9.

    Article  CAS  PubMed  Google Scholar 

  23. Connors KP, Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Prokesch RC, Hand WL. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982;21(3):373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Loffler B, Peters G. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol. 2014;4:99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hand WL, Hand DL. Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int J Antimicrob Agents. 2001;18(5):419–25.

    Article  CAS  PubMed  Google Scholar 

  27. Matzneller P, Krasniqi S, Kinzig M, Sorgel F, Huttner S, Lackner E, et al. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemother. 2013;57(4):1736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunha BA. The atypical pneumonias: clinical diagnosis and importance. Clin Microbiol Infect. 2006;12(Suppl. 3):12–24.

    Article  PubMed  Google Scholar 

  29. Basarab M, Macrae MB, Curtis CM. Atypical pneumonia. Curr Opin Pulm Med. 2014;20(3):247–51.

    Article  CAS  PubMed  Google Scholar 

  30. Mykietiuk A, Carratala J, Fernandez-Sabe N, Dorca J, Verdaguer R, Manresa F, et al. Clinical outcomes for hospitalized patients with Legionella pneumonia in the antigenuria era: the influence of levofloxacin therapy. Clin Infect Dis. 2005;40(6):794–9.

    Article  CAS  PubMed  Google Scholar 

  31. Blazquez Garrido RM, Espinosa Parra FJ, Alemany Frances L, Ramos Guevara RM, Sanchez-Nieto JM, Segovia Hernandez M, et al. Antimicrobial chemotherapy for Legionnaires disease: levofloxacin versus macrolides. Clin Infect Dis. 2005;40(6):800–6.

    Article  PubMed  Google Scholar 

  32. Sabria M, Pedro-Botet ML, Gomez J, Roig J, Vilaseca B, Sopena N, et al. Fluoroquinolones vs macrolides in the treatment of Legionnaires disease. Chest. 2005;128(3):1401–5.

    Article  CAS  PubMed  Google Scholar 

  33. Viasus D, Di Yacovo S, Garcia-Vidal C, Verdaguer R, Manresa F, Dorca J, et al. Community-acquired Legionella pneumophila pneumonia: a single-center experience with 214 hospitalized sporadic cases over 15 years. Medicine (Baltimore). 2013;92(1):51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Haranaga S, Tateyama M, Higa F, Miyagi K, Akamine M, Azuma M, et al. Intravenous ciprofloxacin versus erythromycin in the treatment of Legionella pneumonia. Intern Med. 2007;46(7):353–7.

    Article  PubMed  Google Scholar 

  35. Baltch AL, Bopp LH, Smith RP, Michelsen PB, Ritz WJ. Antibacterial activities of gemifloxacin, levofloxacin, gatifloxacin, moxifloxacin and erythromycin against intracellular Legionella pneumophila and Legionella micdadei in human monocytes. J Antimicrob Chemother. 2005;56(1):104–9.

    Article  CAS  PubMed  Google Scholar 

  36. Griffin AT, Peyrani P, Wiemken T, Arnold F. Macrolides versus quinolones in Legionella pneumonia: results from the Community-Acquired Pneumonia Organization international study. Int J Tuberc Lung Dis. 2010;14(4):495–9.

    CAS  PubMed  Google Scholar 

  37. Nagel JL, Rarus RE, Crowley AW, Alaniz C. Retrospective analysis of azithromycin versus fluoroquinolones for the treatment of Legionella pneumonia. P T. 2014;39(3):203–5.

    PubMed  PubMed Central  Google Scholar 

  38. Carbon C, Nusrat R. Efficacy of telithromycin in community-acquired pneumonia caused by Legionella pneumophila. Eur J Clin Microbiol Infect Dis. 2004;23(8):650–2.

    Article  CAS  PubMed  Google Scholar 

  39. Valve K, Vaalasti A, Anttila VJ, Vuento R. Disseminated Legionella pneumophila infection in an immunocompromised patient treated with tigecycline. Scand J Infect Dis. 2010;42(2):152–5.

    Article  CAS  PubMed  Google Scholar 

  40. Rogozinski LE, Alverson BK, Biondi EA. Diagnosis and treatment of Mycoplasma pneumoniae in children. Minerva Pediatr. 2017;69(2):156–60.

    PubMed  Google Scholar 

  41. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17(4):697–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Principi N, Esposito S. Macrolide-resistant Mycoplasma pneumoniae: its role in respiratory infection. J Antimicrob Chemother. 2013;68(3):506–11.

    Article  CAS  PubMed  Google Scholar 

  43. Nilsson AC, Jensen JS, Bjorkman P, Persson K. Development of macrolide resistance in Mycoplasma pneumoniae-infected Swedish patients treated with macrolides. Scand J Infect Dis. 2014;46(4):315–9.

    Article  CAS  PubMed  Google Scholar 

  44. To KK, Chan KH, Fung YF, Yuen KY, Ho PL. Azithromycin treatment failure in macrolide-resistant Mycoplasma pneumoniae pneumonia. Eur Respir J. 2010;36(4):969–71.

    Article  CAS  PubMed  Google Scholar 

  45. Tagliabue C, Techasaensiri C, Torres JP, Katz K, Meek C, Kannan TR, et al. Efficacy of increasing dosages of clarithromycin for treatment of experimental Mycoplasma pneumoniae pneumonia. J Antimicrob Chemother. 2011;66(10):2323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawai Y, Miyashita N, Kubo M, Akaike H, Kato A, Nishizawa Y, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother. 2013;57(5):2252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moi H, Blee K, Horner PJ. Management of non-gonococcal urethritis. BMC Infect Dis. 2015;15:294.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Murtha AP, Edwards JM. The role of mycoplasma and ureaplasma in adverse pregnancy outcomes. Obstet Gynecol Clin N Am. 2014;41(4):615–27.

    Article  Google Scholar 

  49. Jensen JS. Mycoplasma genitalium infections: diagnosis, clinical aspects, and pathogenesis. Dan Med Bull. 2006;53(1):1–27.

    PubMed  Google Scholar 

  50. Maeda S, Tamaki M, Kubota Y, Nguyen PB, Yasuda M, Deguchi T. Treatment of men with urethritis negative for Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum. Int J Urol. 2007;14(5):422–5.

    Article  PubMed  Google Scholar 

  51. Skerk V, Krhen I, Lisic M, Begovac J, Roglic S, Skerk V, et al. Comparative randomized pilot study of azithromycin and doxycycline efficacy in the treatment of prostate infection caused by Chlamydia trachomatis. Int J Antimicrob Agents. 2004;24(2):188–91.

    Article  CAS  PubMed  Google Scholar 

  52. Skerk V, Schonwald S, Krhen I, Rusinovic M, Strapac Z, Vukovic J. Azithromycin and doxycycline in the treatment of female patients with acute urethral syndrome caused by Ureaplasma urealyticum: significance of duration of clinical symptoms. Drugs Exp Clin Res. 2001;27(4):135–9.

    CAS  PubMed  Google Scholar 

  53. Skerk V, Marekovic I, Markovinovic L, Begovac J, Skerk V, Barsic N, et al. Comparative randomized pilot study of azithromycin and doxycycline efficacy and tolerability in the treatment of prostate infection caused by Ureaplasma urealyticum. Chemotherapy. 2006;52(1):9–11.

    Article  CAS  PubMed  Google Scholar 

  54. Samra Z, Rosenberg S, Dan M. Susceptibility of Ureaplasma urealyticum to tetracycline, doxycycline, erythromycin, roxithromycin, clarithromycin, azithromycin, levofloxacin and moxifloxacin. J Chemother. 2011;23(2):77–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kong FY, Tabrizi SN, Law M, Vodstrcil LA, Chen M, Fairley CK, et al. Azithromycin versus doxycycline for the treatment of genital chlamydia infection: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;59(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  56. Schelonka RL, Katz B, Waites KB, Benjamin DK Jr. Critical appraisal of the role of Ureaplasma in the development of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J. 2005;24(12):1033–9.

    Article  PubMed  Google Scholar 

  57. Hassan HE, Othman AA, Eddington ND, Duffy L, Xiao L, Waites KB, et al. Pharmacokinetics, safety, and biologic effects of azithromycin in extremely preterm infants at risk for Ureaplasma colonization and bronchopulmonary dysplasia. J Clin Pharmacol. 2011;51(9):1264–75.

    Article  CAS  PubMed  Google Scholar 

  58. Merchan LM, Hassan HE, Terrin ML, Waites KB, Kaufman DA, Ambalavanan N, et al. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization. Antimicrob Agents Chemother. 2015;59(1):570–8.

    Article  PubMed  CAS  Google Scholar 

  59. Viscardi RM, Othman AA, Hassan HE, Eddington ND, Abebe E, Terrin ML, et al. Azithromycin to prevent bronchopulmonary dysplasia in Ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-per-kilogram single intravenous dose. Antimicrob Agents Chemother. 2013;57(5):2127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beeton ML, Chalker VJ, Jones LC, Maxwell NC, Spiller OB. Antibiotic resistance among clinical Ureaplasma isolates recovered from neonates in England and Wales between 2007 and 2013. Antimicrob Agents Chemother. 2015;60(1):52–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Beeton ML, Spiller OB. Antibiotic resistance among Ureaplasma spp. isolates: cause for concern? J Antimicrob Chemother. 2017;72(2):330–7.

    Article  CAS  PubMed  Google Scholar 

  62. Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J, von Eiff C, et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis. 2010;202(7):1031–40.

    Article  PubMed  Google Scholar 

  63. Johns BE, Purdy KJ, Tucker NP, Maddocks SE. Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection. Microbiol Insights. 2015;8:15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tuchscherr L, Medina E, Hussain M, Volker W, Heitmann V, Niemann S, et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011;3(3):129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, et al. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother. 2013;68(7):1455–64.

    Article  CAS  PubMed  Google Scholar 

  66. Tande AJ, Osmon DR, Greenwood-Quaintance KE, Mabry TM, Hanssen AD, Patel R. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci. MBio. 2014;5(5):e01910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moran E, Byren I, Atkins BL. The diagnosis and management of prosthetic joint infections. J Antimicrob Chemother. 2010;65(Suppl. 3):iii45–54.

    CAS  PubMed  Google Scholar 

  68. Peel TN, Buising KL, Choong PF. Diagnosis and management of prosthetic joint infection. Curr Opin Infect Dis. 2012;25(6):670–6.

    Article  PubMed  Google Scholar 

  69. Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev. 2010;23(1):14–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006;43(8):961–7.

    Article  PubMed  Google Scholar 

  71. Viale P, Furlanut M, Scudeller L, Pavan F, Negri C, Crapis M, et al. Treatment of pyogenic (non-tuberculous) spondylodiscitis with tailored high-dose levofloxacin plus rifampicin. Int J Antimicrob Agents. 2009;33(4):379–82.

    Article  CAS  PubMed  Google Scholar 

  72. Senneville E, Joulie D, Legout L, Valette M, Dezeque H, Beltrand E, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis. 2011;53(4):334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Niska JA, Shahbazian JH, Ramos RI, Francis KP, Bernthal NM, Miller LS. Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob Agents Chemother. 2013;57(10):5080–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Antony SJ. Combination therapy with daptomycin, vancomycin, and rifampin for recurrent, severe bone and prosthetic joint infections involving methicillin-resistant Staphylococcus aureus. Scand J Infect Dis. 2006;38(4):293–5.

    Article  PubMed  Google Scholar 

  75. John AK, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53(7):2719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saleh-Mghir A, Muller-Serieys C, Dinh A, Massias L, Cremieux AC. Adjunctive rifampin is crucial to optimizing daptomycin efficacy against rabbit prosthetic joint infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(10):4589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. von Eiff C. Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians. Int J Antimicrob Agents. 2008;31(6):507–10.

    Article  CAS  Google Scholar 

  78. Meyer RD. Risk factors and comparisons of clinical nephrotoxicity of aminoglycosides. Am J Med. 1986;80(6B):119–25.

    Article  CAS  PubMed  Google Scholar 

  79. Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem. 2002;277(1):618–22.

    Article  CAS  PubMed  Google Scholar 

  80. Contrepois A, Brion N, Garaud JJ, Faurisson F, Delatour F, Levy JC, et al. Renal disposition of gentamicin, dibekacin, tobramycin, netilmicin, and amikacin in humans. Antimicrob Agents Chemother. 1985;27(4):520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schentag JJ, Lasezkay G, Cumbo TJ, Plaut ME, Jusko WJ. Accumulation pharmacokinetics of tobramycin. Antimicrob Agents Chemother. 1978;13(4):649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Giuliano RA, Verpooten GA, Verbist L, Wedeen RP, De Broe ME. In vivo uptake kinetics of aminoglycosides in the kidney cortex of rats. J Pharmacol Exp Ther. 1986;236(2):470–5.

    CAS  PubMed  Google Scholar 

  84. Olsen KM, Rudis MI, Rebuck JA, Hara J, Gelmont D, Mehdian R, et al. Effect of once-daily dosing vs. multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med. 2004;32(8):1678–82.

    Article  CAS  PubMed  Google Scholar 

  85. Smyth A, Tan KH, Hyman-Taylor P, Mulheran M, Lewis S, Stableforth D, et al. Once versus three-times daily regimens of tobramycin treatment for pulmonary exacerbations of cystic fibrosis: the TOPIC study: a randomised controlled trial. Lancet. 2005;365(9459):573–8.

    Article  CAS  PubMed  Google Scholar 

  86. Smyth AR, Bhatt J, Nevitt SJ. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2017;(3):CD002009.

  87. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.

    Article  PubMed  Google Scholar 

  88. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86.

    Article  CAS  PubMed  Google Scholar 

  89. Bassetti M, Righi E, Crapis M, Cojutti P, Venturini S, Viale P, et al. Gentamicin once-daily in enterococcal endocarditis. Int J Cardiol. 2013;168(5):5033–4.

    Article  PubMed  Google Scholar 

  90. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient: concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;20(77):3–11.

    Article  CAS  Google Scholar 

  92. Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock: does the dose matter? Crit Care. 2009;13(3):214.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Taccone FS, Laterre PF, Spapen H, Dugernier T, Delattre I, Layeux B, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14(2):R53.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Galvez R, Luengo C, Cornejo R, Kosche J, Romero C, Tobar E, et al. Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int J Antimicrob Agents. 2011;38(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  95. Allou N, Bouteau A, Allyn J, Snauwaert A, Valance D, Jabot J, et al. Impact of a high loading dose of amikacin in patients with severe sepsis or septic shock. Ann Intensive Care. 2016;6(1):106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Roger C, Nucci B, Molinari N, Bastide S, Saissi G, Pradel G, et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents. 2015;46(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  97. Roger C, Nucci B, Louart B, Friggeri A, Knani H, Evrard A, et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother. 2016;71(1):208–12.

    Article  CAS  PubMed  Google Scholar 

  98. Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother. 2011;55(6):2704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakano T, Nakamura Y, Takata T, Irie K, Sano K, Imakyure O, et al. Change of teicoplanin loading dose requirement for incremental increases of systemic inflammatory response syndrome score in the setting of sepsis. Int J Clin Pharm. 2016;38(4):908–14.

    Article  PubMed  Google Scholar 

  100. Thallinger C, Buerger C, Plock N, Kljucar S, Wuenscher S, Sauermann R, et al. Effect of severity of sepsis on tissue concentrations of linezolid. J Antimicrob Chemother. 2008;61(1):173–6.

    Article  CAS  PubMed  Google Scholar 

  101. Ernst EJ, Klepser ME, Klepser TB, Nightingale CH, Hunsicker LG. Comparison of the serum and intracellular pharmacokinetics of azithromycin in healthy and diabetic volunteers. Pharmacotherapy. 2000;20(6):657–61.

    Article  CAS  PubMed  Google Scholar 

  102. Krasniqi S, Matzneller P, Kinzig M, Sorgel F, Huttner S, Lackner E, et al. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy. Antimicrob Agents Chemother. 2012;56(2):1059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Garraffo R, Lavrut T, Durant J, Heripret L, Serini MA, Dunais B, et al. In vivo comparative pharmacokinetics and pharmacodynamics of moxifloxacin and levofloxacin in human neutrophils. Clin Drug Investig. 2005;25(10):643–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Pea.

Ethics declarations

Funding

No source of funding was used for the preparation of this manuscript.

Conflict of interest

Federico Pea has no conflicts of interest directly relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pea, F. Intracellular Pharmacokinetics of Antibacterials and Their Clinical Implications. Clin Pharmacokinet 57, 177–189 (2018). https://doi.org/10.1007/s40262-017-0572-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0572-y

Navigation