Skip to main content

Advertisement

Log in

Effect of Adherence on Pharmacokinetic/Pharmacodynamic Relationships of Oral Targeted Anticancer Drugs

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The emergence of oral targeted anticancer agents transformed several cancers into chronic conditions with a need for long-term oral treatment. Although cancer is a life-threatening condition, oncology medication adherence—the extent to which a patient follows the drug regimen that is intended by the prescriber—can be suboptimal in the long term, as in any other chronic disease. Poor adherence can impact negatively on clinical outcomes, notably because most of these drugs are given as a standard non-individualized dosage despite marked inter-individual variabilities that can lead to toxic or inefficacious drug concentrations. This has been especially studied with the prototypal drug imatinib. In the context of therapeutic drug monitoring (TDM), increasingly advocated for oral anticancer treatment optimization, unreported suboptimal adherence affecting drug intake history may lead to significant bias in the concentration interpretation and inappropriate dosage adjustments. In the same way, suboptimal adherence may also bias the results of pharmacokinetic modeling studies, which will affect in turn Bayesian TDM interpretation that relies on such population models. Detailed knowledge of the influence of adherence on plasma concentrations in pharmacokinetic studies or in routine TDM programs is however presently missing in the oncology field. Studies on this topic are therefore eagerly awaited to better pilot the treatment of cancer with the new targeted agents and to find their optimal dosage regimen. Hence, the development and assessment of effective medication adherence programs are warranted for these treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jabbour EJ, Kantarjian H, et al. Patient adherence to tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Am J Hematol. 2012;87(7):687–91.

    Article  PubMed  Google Scholar 

  2. Levitzki A, Mishani E. Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem. 2006;75:93–109.

    Article  CAS  PubMed  Google Scholar 

  3. Horne SD, Stevens JB, et al. Why imatinib remains an exception of cancer research. J Cell Physiol. 2013;228(4):665–70.

    Article  CAS  PubMed  Google Scholar 

  4. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies H, Bignell GR, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  6. Vrijens B, De Geest S, et al. A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol. 2012;73(5):691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kardas P, Lewek P, et al. Determinants of patient adherence: a review of systematic reviews. Front Pharmacol. 2013;4:91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. World Health Organization. Adherence to long-term therapies: evidence for action. Geneva: World Health Organization; 2003.

    Google Scholar 

  9. Geynisman DM, Wickersham KE. Adherence to targeted oral anticancer medications. Discov Med. 2013;15(83):231–41.

    PubMed  Google Scholar 

  10. Timmers L, Boons CC, et al. Adherence, exposure and patients’ experiences with the use of erlotinib in non-small cell lung cancer. J Cancer Res Clin Oncol. 2015;141(8):1481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Font R, Espinas JA, et al. Prescription refill, patient self-report and physician report in assessing adherence to oral endocrine therapy in early breast cancer patients: a retrospective cohort study in Catalonia, Spain. Br J Cancer. 2012;107(8):1249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruddy K, Mayer E, et al. Patient adherence and persistence with oral anticancer treatment. CA Cancer J Clin. 2009;59(1):56–66.

    Article  PubMed  Google Scholar 

  13. Murphy CC, Bartholomew LK, et al. Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: a systematic review. Breast Cancer Res Treat. 2012;134(2):459–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Myrick ME, Schmid SM, et al. Eligibility, compliance and persistence of extended adjuvant endocrine therapy for breast cancer. Acta Oncol. 2012;51(2):247–53.

    Article  CAS  PubMed  Google Scholar 

  15. Cluze C, Rey D, et al. Adjuvant endocrine therapy with tamoxifen in young women with breast cancer: determinants of interruptions vary over time. Ann Oncol. 2012;23(4):882–90.

    Article  CAS  PubMed  Google Scholar 

  16. Makubate B, Donnan PT, et al. Cohort study of adherence to adjuvant endocrine therapy, breast cancer recurrence and mortality. Br J Cancer. 2013;108(7):1515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hershman DL, Shao T, et al. Early discontinuation and non-adherence to adjuvant hormonal therapy are associated with increased mortality in women with breast cancer. Breast Cancer Res Treat. 2011;126(2):529–37.

    Article  CAS  PubMed  Google Scholar 

  18. Sheppard VB, Faul LA, et al. Frailty and adherence to adjuvant hormonal therapy in older women with breast cancer: CALGB protocol 369901. J Clin Oncol. 2014;32(22):2318–27.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee HS, Lee JY, et al. Low adherence to upfront and extended adjuvant letrozole therapy among early breast cancer patients in a clinical practice setting. Oncology. 2014;86(5–6):340–9.

    Article  CAS  PubMed  Google Scholar 

  20. Noens L, van Lierde MA, et al. Prevalence, determinants, and outcomes of nonadherence to imatinib therapy in patients with chronic myeloid leukemia: the ADAGIO study. Blood. 2009;113(22):5401–11.

    Article  CAS  PubMed  Google Scholar 

  21. Marin D, Bazeos A, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ibrahim AR, Eliasson L, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood. 2011;117(14):3733–6.

    Article  CAS  PubMed  Google Scholar 

  23. Branford S, Yeung DT, et al. BCR-ABL1 doubling times more reliably assess the dynamics of CML relapse compared with the BCR-ABL1 fold rise: implications for monitoring and management. Blood. 2012;119(18):4264–71.

    Article  CAS  PubMed  Google Scholar 

  24. Breccia M, Efficace F, et al. Adherence and future discontinuation of tyrosine kinase inhibitors in chronic phase chronic myeloid leukemia: a patient-based survey on 1133 patients. Leuk Res. 2015;39(10):1055–9.

    Article  PubMed  Google Scholar 

  25. Rychter A, Jerzmanowski P, et al. Treatment adherence in chronic myeloid leukaemia patients receiving tyrosine kinase inhibitors. Med Oncol. 2017;34(6):104.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Krummenacher I, Cavassini M, et al. An interdisciplinary HIV-adherence program combining motivational interviewing and electronic antiretroviral drug monitoring. AIDS Care. 2011;23(5):550–61.

    Article  PubMed  Google Scholar 

  27. Lelubre M, Kamal S, et al. Interdisciplinary medication adherence program: the example of a university community pharmacy in Switzerland. BioMed Res Int. 2015;2015:103546.

    Article  PubMed  Google Scholar 

  28. de Bruin M, Oberje EJM, et al. Effectiveness and cost-effectiveness of a nurse-delivered intervention to improve adherence to treatment for HIV: a pragmatic, multicentre, open-label, randomised clinical trial. Lancet Infect Dis. 2017;17(6):595–604.

    Article  PubMed  Google Scholar 

  29. Verbrugghe M, Duprez V, et al. Factors influencing adherence in cancer patients taking oral tyrosine kinase inhibitors: a qualitative study. Cancer Nurs. 2016;39(2):153–62.

    Article  PubMed  Google Scholar 

  30. Mathes T, Antoine SL, et al. Adherence enhancing interventions for oral anticancer agents: a systematic review. Cancer Treat Rev. 2014;40(1):102–8.

    Article  PubMed  Google Scholar 

  31. Santoleri F, Lasala R, et al. Medication adherence to tyrosine kinase inhibitors: 2-year analysis of medication adherence to imatinib treatment for chronic myeloid leukemia and correlation with the depth of molecular response. Acta Haematol. 2016;136(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  32. von Mehren M, Widmer N. Correlations between imatinib pharmacokinetics, pharmacodynamics, adherence, and clinical response in advanced metastatic gastrointestinal stromal tumor (GIST): an emerging role for drug blood level testing? Cancer Treat Rev. 2011;37(4):291–9.

    Article  Google Scholar 

  33. Di Bella NJ, Bhowmik D, et al. The effectiveness of tyrosine kinase inhibitors and molecular monitoring patterns in newly diagnosed patients with chronic myeloid leukemia in the community setting. Clin Lymphoma Myeloma Leuk. 2015;15(10):599–605.

    Article  PubMed  Google Scholar 

  34. Barthelemy P, Asmane-De la Porte I, et al. Adherence and patients’ attitudes to oral anticancer drugs: a prospective series of 201 patients focusing on targeted therapies. Oncology. 2015;88(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez JS, Batchelder AW, et al. Depression and HIV/AIDS treatment nonadherence: a review and meta-analysis. J Acquir Immune Defic Syndr. 2011;58(2):181–7.

    Article  PubMed  Google Scholar 

  36. de Wit D, Guchelaar HJ, et al. Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today. 2015;20(1):18–36.

    Article  PubMed  Google Scholar 

  37. Mathijssen RH, Sparreboom A, et al. Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol. 2014;11(5):272–81.

    Article  CAS  PubMed  Google Scholar 

  38. Bardin C, Veal G, et al. Therapeutic drug monitoring in cancer: are we missing a trick? Eur J Cancer. 2014;50(12):2005–9.

    Article  CAS  PubMed  Google Scholar 

  39. Fletcher CV, Testa MA, et al. Four measures of antiretroviral medication adherence and virologic response in AIDS clinical trials group study 359. J Acquir Immune Defic Syndr. 2005;40(3):301–6.

    Article  PubMed  Google Scholar 

  40. Fayet Mello A, Buclin T, et al. Successful efavirenz dose reduction guided by therapeutic drug monitoring. Antivir Ther. 2011;16(2):189–97.

    Article  PubMed  Google Scholar 

  41. Podsadecki TJ, Vrijens BC, et al. “White coat compliance” limits the reliability of therapeutic drug monitoring in HIV-1-infected patients. HIV Clin Trials. 2008;9(4):238–46.

    Article  PubMed  Google Scholar 

  42. Rowland A, van Dyk M, et al. Kinase inhibitor pharmacokinetics: comprehensive summary and roadmap for addressing inter-individual variability in exposure. Expert Opin Drug Metab Toxicol. 2017;13(1):31–49.

    Article  CAS  PubMed  Google Scholar 

  43. Ling J, Fettner S, et al. Effect of food on the pharmacokinetics of erlotinib, an orally active epidermal growth factor receptor tyrosine-kinase inhibitor, in healthy individuals. Anticancer Drugs. 2008;19(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  44. Achtari Jeanneret L, Lüthi F, et al. Adhésion thérapeutique aux traitements oncologiques oraux et prise en charge interdisciplinaire. Rev Med Suisse. 2011;7(296)1154–8, 1160.

  45. Fuchs A, Rotzinger A, et al. Comparison of population pharmacokinetics based on steady-state assumption versus electronically monitored adherence to lopinavir, atazanavir, efavirenz, and etravirine: a retrospective study. Ther Drug Monit. 2016;38(4):506–15.

    Article  CAS  PubMed  Google Scholar 

  46. Hénin E, Tod M, et al. Pharmacokinetically based estimation of patient compliance with oral anticancer chemotherapies: in silico evaluation. Clin Pharmacokinet. 2009;48(6):359–69.

    Article  PubMed  Google Scholar 

  47. Barrière O, Li J, et al. A Bayesian approach for the estimation of patient compliance based on the last sampling information. J Pharmacokinet Pharmacodyn. 2011;38(3):333–51.

    Article  PubMed  Google Scholar 

  48. Eechoute K, Fransson MN, et al. A long-term prospective population pharmacokinetic study on imatinib plasma concentrations in GIST patients. Clin Cancer Res. 2012;18(20):5780–7.

    Article  CAS  PubMed  Google Scholar 

  49. Judson I, Peiming M, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol. 2005;55(4):379–86.

    Article  CAS  PubMed  Google Scholar 

  50. Chatelut E, Gandia P, et al. Long-term prospective population PK study in GIST patients [letter]. Clin Cancer Res. 2013;19(4):949.

    Article  PubMed  Google Scholar 

  51. Farag S, Verheijen RB, et al. Imatinib pharmacokinetics in a large observational cohort of gastrointestinal stromal tumour patients. Clin Pharmacokinet. 2017;56(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  52. Bins S, Eechoute K, et al. Prospective analysis in GIST patients on the role of alpha-1 acid glycoprotein in imatinib exposure. Clin Pharmacokinet. 2016;56(3):305–10.

    Article  PubMed Central  Google Scholar 

  53. Arrondeau J, Mir O, et al. Sorafenib exposure decreases over time in patients with hepatocellular carcinoma. Invest New Drugs. 2012;30(5):2046–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Widmer.

Ethics declarations

Funding

No funding was provided for the preparation of this article.

Conflict of interest

Evelina Cardoso, Chantal Csajka, Marie P. Schneider, and Nicolas Widmer have no conflicts of interest directly relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, E., Csajka, C., Schneider, M.P. et al. Effect of Adherence on Pharmacokinetic/Pharmacodynamic Relationships of Oral Targeted Anticancer Drugs. Clin Pharmacokinet 57, 1–6 (2018). https://doi.org/10.1007/s40262-017-0571-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0571-z

Navigation