Skip to main content
Log in

Exploiting Pharmacokinetic Models of Tamoxifen and Endoxifen to Identify Factors Causing Subtherapeutic Concentrations in Breast Cancer Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

A better understanding of the highly variable pharmacokinetics (PK) of tamoxifen and its active metabolite endoxifen in breast cancer patients is crucial to support individualised treatment. This study used a modelling and simulation approach to quantitatively assess the influence of cytochrome P450 (CYP) 2D6 activity and other relevant factors on tamoxifen and endoxifen PK to identify subgroups at risk for subtherapeutic endoxifen concentrations.

Methods

Simulations were performed using two previously published PK models jointly describing tamoxifen and endoxifen with CYP2D6 and CYP3A4/5 enzyme activities implemented as covariates. Steady-state predictions were compared between models and with the literature values. Factors potentially causing between-model discrepancies were explored. A previously published threshold (6 ng/mL) was used to identify patients with subtherapeutic endoxifen concentrations and to perform a dose adaptation study.

Results

Steady-state predictions of tamoxifen and endoxifen were considerably different between the models. The factors, differences in sampling time, adherence and bioavailability, were not able to fully capture between-model variability. Endoxifen steady-state fluctuations within a dosing interval were minimal (<6%). Poor (97%) and intermediate (54%) CYP2D6 metabolisers failed to achieve therapeutic endoxifen concentrations, suggesting adapted doses of tamoxifen 80 and 40 mg, respectively, achieving therapeutic endoxifen concentrations in 89.7% of patients (standard dosing 45.2%). However, interindividual variability remained.

Conclusions

To achieve therapeutic endoxifen concentrations early in treatment, it is advisable to initiate treatment by CYP2D6 genotype/phenotype-guided dosing, followed by therapeutic drug monitoring at steady-state. We strongly advocate to adequately measure, report and prospectively investigate influential factors (i.e. adherence, bioavailability, time to PK steady-state) in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov. 2003;2:205–13.

    Article  CAS  PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon. International Agency for Research on Cancer. 2013. http://globocan.iarc.fr. Accessed 17 Jan 2017.

  3. Institute for Quality and Efficiency in Health Care (IQWiG). Executive summary for final report A10-03: aromatase inhibitors in breast. 2016. https://www.iqwig.de/download/A10-03_Aromatase-inhibitors-in-breast-cancer_Executive-summary-of-final-report_V1-0.pdf. Accessed Mar 2017.

  4. Mürdter TE, Schroth W, Bacchus-Gerybadze L, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89:708–17.

    Article  PubMed  Google Scholar 

  5. Maximov PY, Fernandes DJ, McDaniel RE, Myers CB, Curpan RF, Jordan VC. Influence of the length and positioning of the antiestrogenic side chain of endoxifen and 4-hydroxytamoxifen on gene activation and growth of estrogen receptor positive cancer cells. J Med Chem. 2014;57:4569–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310:1062–75.

    Article  CAS  PubMed  Google Scholar 

  7. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. CYP2D6 allele nomenclature. 2015. http://www.cypalleles.ki.se/cyp2d6.htm. Accessed 17 Jan 2017.

  8. Madlensky L, Natarajan L, Tchu S, et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther. 2011;89:718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brauch H, Schroth W, Goetz MP, et al. Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J Clin Oncol. 2013;31:176–80.

    Article  CAS  PubMed  Google Scholar 

  10. Binkhorst L, Mathijssen RHJ, Jager A, van Gelder T. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev. 2015;41:289–99.

    Article  CAS  PubMed  Google Scholar 

  11. Kloft C, Trame MN, Ritter CA. Systems pharmacology in drug development and therapeutic use: a forthcoming paradigm shift. Eur J Pharm Sci. 2016;94:1–3.

    Article  CAS  PubMed  Google Scholar 

  12. Holford N, Ma SC, Ploeger BA. Clinical trial simulation: a review. Clin Pharmacol Ther. 2010;88:166–82.

    Article  CAS  PubMed  Google Scholar 

  13. Ette EI, Williams PJ, Kim YH, Lane JR, Liu M-J, Capparelli EV. Model appropriateness and population pharmacokinetic modeling. J Clin Pharmacol. 2003;43:610–23.

    Article  CAS  PubMed  Google Scholar 

  14. Dahmane EBA. Tamoxifen pharmacokinetics and pharmacogenetics in endocrine sensitive breast cancer patients. Thèse de doctorat: University of Geneva. No. Sc. 4617. 2013. http://archive-ouverte.unige.ch/unige:33429. Accessed 17 Jan 2017.

  15. Dahmane E, Zaman K, Perey L, et al. Population pharmacokinetics of tamoxifen and three of its metabolites in breast cancer patients. 2013. http://www.page-meeting.org/pdf_assets/6546-Poster_ElyesDahmane.pdf. Accessed 17 Jan 2017.

  16. Ter Heine R, Binkhorst L, de Graan AJM, et al. Population pharmacokinetic modelling to assess the impact of CYP2D6 and CYP3A metabolic phenotypes on the pharmacokinetics of tamoxifen and endoxifen. Br J Clin Pharmacol. 2014;78:572–86.

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Graan A-JM, Teunissen SF, de Vos FYFL, et al. Dextromethorphan as a phenotyping test to predict endoxifen exposure in patients on tamoxifen treatment. J Clin Oncol. 2011;29:3240–6.

    Article  PubMed  Google Scholar 

  18. Sabaté E, World Health Organization. Adherence to long-term therapies: evidence for action. Geneva: World Health Organization; 2003.

  19. Macey RI, Oster GF, Zahnley T. Berkeley Madonna User’s Guide. 2009. https://www.berkeleymadonna.com/system/storage/download/BM-Users-Guide-8.0.2.pdf. Accessed 23 Jan 2017.

  20. Krause A, Lowe PJ. Visualization and communication of pharmacometric models with Berkeley Madonna. CPT Pharmacomet Syst Pharmacol. 2014;3:e116.

    Article  CAS  Google Scholar 

  21. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2:e50.

    Article  CAS  Google Scholar 

  22. Core R. Team: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.

    Google Scholar 

  23. Hutson PR, Love RR, Havighurst TC, Rogers E, Cleary JF. Effect of exemestane on tamoxifen pharmacokinetics in postmenopausal women treated for breast cancer. Clin Cancer Res. 2005;11:8722–7.

    Article  CAS  PubMed  Google Scholar 

  24. Zeneca A, Pharmaceuticals LP. Nolvadex: Submission of pediatric study report (6157US/0013) to the FDA; 2002. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21109_Nolvadex_biopharmr.pdf. Accessed 09 May 2017.

  25. Dickschen K, Willmann S, Thelen K, Lippert J, Hempel G, Eissing T. Physiologically based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance. Front Pharmacol. 2012;3:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmad A, Ali SM, Ahmad MU, Sheikh S, Ahmad I. Orally administered endoxifen is a new therapeutic agent for breast cancer. Breast Cancer Res Treat. 2010;122:579–84.

    Article  CAS  PubMed  Google Scholar 

  27. Borges S, Desta Z, Li L, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 2006;80:61–74.

    Article  CAS  PubMed  Google Scholar 

  28. Antunes MV, Timm TADF, de Oliveira V, et al. Influence of CYP2D6 and CYP3A4 phenotypes, drug interactions and vitamin D status on tamoxifen biotransformation. Ther Drug Monit. 2015;37:733–44.

    Article  CAS  PubMed  Google Scholar 

  29. Barginear MF, Jaremko M, Peter I, et al. Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther. 2011;90:605–11.

    Article  CAS  PubMed  Google Scholar 

  30. Jager NGL, Rosing H, Linn SC, Schellens JHM, Beijnen JH. Importance of highly selective LC-MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen. Breast Cancer Res Treat. 2012;133:793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hershman DL, Kushi LH, Shao T, et al. Early discontinuation and nonadherence to adjuvant hormonal therapy in a cohort of 8769 early-stage breast cancer patients. J Clin Oncol. 2010;28:4120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Binkhorst L, van Gelder T, Loos WJ, et al. Effects of CYP induction by rifampicin on tamoxifen exposure. Clin Pharmacol Ther. 2012;92:62–7.

    Article  CAS  PubMed  Google Scholar 

  33. Binkhorst L, Kloth JSL, de Wit AS, et al. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Breast Cancer Res Treat. 2015;152:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. AstraZeneca Pharmaceuticals LP. Medication guide: summary of information about Nolvadex. 2005. http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/17970s053lbl.pdf. Accessed 17 Jan 2017.

  35. Kisanga ER, Mellgren G, Lien E. Excretion of hydroxylated metabolites of tamoxifen in human bile and urine. Anticancer Res. 2005;25:4487–92.

    CAS  PubMed  Google Scholar 

  36. Jordan VC. The development of tamoxifen for breast cancer therapy: a tribute to the late Arthur L. Walpole. Breast Cancer Res Treat. 1988;11:197–209.

    Article  CAS  PubMed  Google Scholar 

  37. Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97:30–9.

    Article  CAS  PubMed  Google Scholar 

  38. Irvin WJ, Walko CM, Weck KE, et al. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced cyp2d6 metabolism: a multicenter study. J Clin Oncol. 2011;29:3232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saladores P, Mürdter T, Eccles D, et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenom J. 2014;15:84–94.

    Article  Google Scholar 

  40. Gong IY, Teft WA, Ly J, et al. Determination of clinically therapeutic endoxifen concentrations based on efficacy from human MCF7 breast cancer xenografts. Breast Cancer Res Treat. 2013;139:61–9.

    Article  CAS  PubMed  Google Scholar 

  41. Wicha SG, Kees MG, Solms A, Minichmayr IK, Kratzer A, Kloft C. TDMx: a novel web-based open-access support tool for optimising antimicrobial dosing regimens in clinical routine. Int J Antimicrob Agents. 2015;45:442–4.

    Article  CAS  PubMed  Google Scholar 

  42. Darwich AS, Ogungbenro K, Vinks AA, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–56.

    Article  CAS  PubMed  Google Scholar 

  43. Ruddy KJ, Desantis SD, Gelman RS, et al. Personalized medicine in breast cancer: tamoxifen, endoxifen, and CYP2D6 in clinical practice. Breast Cancer Res Treat. 2013;141:421–7.

    Article  CAS  PubMed  Google Scholar 

  44. Dezentjé VO, Opdam FL, Gelderblom H, et al. CYP2D6 genotype- and endoxifen-guided tamoxifen dose escalation increases endoxifen serum concentrations without increasing side effects. Breast Cancer Res Treat. 2015;153:583–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fox P, Balleine R, Lee C, et al. Dose escalation of tamoxifen in patients with low endoxifen level: evidence for therapeutic drug monitoring: The TADE Study. Clin Cancer Res. 2016;22:3164–71.

    Article  CAS  PubMed  Google Scholar 

  46. Dickschen K, Eissing T, Mürdter T, Schwab M, Willmann S, Hempel G. Concomitant use of tamoxifen and endoxifen in postmenopausal early breast cancer: prediction of plasma levels by physiologically-based pharmacokinetic modeling. SpringerPlus. 2014;3:285.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Regan MM, Leyland-Jones B, Bouzyk M, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst. 2012;104:441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rae JM, Drury S, Hayes DF, et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst. 2012;104:452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schroth W, Goetz MP, Hamann U, et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA. 2009;302:1429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brauch H, Schwab M. Prediction of tamoxifen outcome by genetic variation of CYP2D6 in post-menopausal women with early breast cancer. Br J Clin Pharmacol. 2014;77:695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ratain MJ, Nakamura Y, Cox NJ. CYP2D6 genotype and tamoxifen activity: understanding interstudy variability in methodological quality. Clin Pharmacol Ther. 2013;94:185–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19:69–76.

    Article  PubMed  Google Scholar 

  53. Klopp-Schulze L, Joerger M, Wicha S, Parra-Guillen ZP, Kloft C. Making use of modeling and simulations: Towards individualized tamoxifen therapy in breast cancer. Int J Clin Pharmacol Ther. Epub 19 Sep 2016.

Download references

Acknowledgements

The authors thank the High-Performance Computing Service of ZEDAT at Freie Universitaet Berlin (http://www.zedat.fuberlin.de/Compute) for computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Kloft.

Ethics declarations

Funding

No sources of funding were used in the preparation of this study.

Conflicts of interest

Lena Klopp-Schulze, Markus Joerger, Sebastian G. Wicha, Rob ter Heine, Chantal Csajka and Zinnia P. Parra-Guillen declare no conflicts of interest. Charlotte Kloft reports grants from an industry consortium (AbbVie Deutschland GmbH & Co. KG, Boehringer Ingelheim Pharma GmbH & Co. KG, Grünenthal GmbH, F. Hoffmann-La Roche Ltd, Merck KGaA and Sanofi) and the Innovative Medicines Initiative-Joint Undertaking (‘DDMoRe’), both outside the submitted work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Other

Parts of the results of this study were presented as posters at the 24th and 25th Population Approach Group Europe (PAGE) annual meeting (2015 and 2016). Preliminary results of the dose adaptation study have been presented at the Central European Society of Anticancer-Drug Research (CESAR) meeting (2015) and thereupon published as an extended abstract [53].

Additional information

Zinnia P. Parra-Guillen and Charlotte Kloft shared the senior authorship of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 214 kb)

Supplementary material 2 (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klopp-Schulze, L., Joerger, M., Wicha, S.G. et al. Exploiting Pharmacokinetic Models of Tamoxifen and Endoxifen to Identify Factors Causing Subtherapeutic Concentrations in Breast Cancer Patients. Clin Pharmacokinet 57, 229–242 (2018). https://doi.org/10.1007/s40262-017-0555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0555-z

Navigation