Skip to main content
Log in

Physiologically Based Pharmacokinetic Modeling to Predict Drug–Drug Interactions with Efavirenz Involving Simultaneous Inducing and Inhibitory Effects on Cytochromes

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Antiretroviral drugs are among the therapeutic agents with the highest potential for drug–drug interactions (DDIs). In the absence of clinical data, DDIs are mainly predicted based on preclinical data and knowledge of the disposition of individual drugs. Predictions can be challenging, especially when antiretroviral drugs induce and inhibit multiple cytochrome P450 (CYP) isoenzymes simultaneously.

Methods

This study predicted the magnitude of the DDI between efavirenz, an inducer of CYP3A4 and inhibitor of CYP2C8, and dual CYP3A4/CYP2C8 substrates (repaglinide, montelukast, pioglitazone, paclitaxel) using a physiologically based pharmacokinetic (PBPK) modeling approach integrating concurrent effects on CYPs. In vitro data describing the physicochemical properties, absorption, distribution, metabolism, and elimination of efavirenz and CYP3A4/CYP2C8 substrates as well as the CYP-inducing and -inhibitory potential of efavirenz were obtained from published literature. The data were integrated in a PBPK model developed using mathematical descriptions of molecular, physiological, and anatomical processes defining pharmacokinetics. Plasma drug–concentration profiles were simulated at steady state in virtual individuals for each drug given alone or in combination with efavirenz. The simulated pharmacokinetic parameters of drugs given alone were compared against existing clinical data. The effect of efavirenz on CYP was compared with published DDI data.

Results

The predictions indicate that the overall effect of efavirenz on dual CYP3A4/CYP2C8 substrates is induction of metabolism. The magnitude of induction tends to be less pronounced for dual CYP3A4/CYP2C8 substrates with predominant CYP2C8 metabolism.

Conclusion

PBPK modeling constitutes a useful mechanistic approach for the quantitative prediction of DDI involving simultaneous inducing or inhibitory effects on multiple CYPs as often encountered with antiretroviral drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barry M, Mulcahy F, Merry C, Gibbons S, Back D. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.

    Article  CAS  PubMed  Google Scholar 

  2. Marzolini C, Battegay M, Back D. Mechanisms of drug interactions II: transport proteins. In: Piscitelli SC, Rodvold KA, Pai MP, editors. Drug interactions in infectious diseases. Totawa: Humana Press; 2011. p. 43–72.

    Chapter  Google Scholar 

  3. Evans-Jones JG, Cottle LE, Back DJ, Gibbons S, Beeching NJ, Carey PB, et al. Recognition of risk for clinically significant drug interactions among HIV-infected patients receiving antiretroviral therapy. Clin Infect Dis. 2010;50(10):1419–21.

    Article  PubMed  Google Scholar 

  4. Marzolini C, Elzi L, Gibbons S, Weber R, Fux C, Furrer H, Swiss HIV Cohort Study, et al. Prevalence of comedications and effect of potential drug-drug interactions in the Swiss HIV Cohort Study. Antivir Ther. 2010;15(3):413–23.

    Article  CAS  PubMed  Google Scholar 

  5. Seden K, Merry C, Hewson R, Siccardi M, Lamorde M, Byakika-Kibwika P, et al. Prevalence and type of drug-drug interactions involving ART in patients attending a specialist HIV outpatient clinic in Kampala, Uganda. J Antimicrob Chemother. 2015;70(12):3317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kigen G, Kimaiyo S, Nyandiko W, Faragher B, Sang E, Jakait B, et al. Prevalence of potential drug-drug interactions involving antiretroviral drugs in a large Kenyan cohort. PLoS One. 2011;6(2):e16800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Maat MM, de Boer A, Koks CH, Mulder JW, Meenhorst PL, van Gorp EC, et al. Evaluation of clinical pharmacist interventions on drug interactions in outpatient pharmaceutical HIV-care. J Clin Pharm Ther. 2004;29(2):121–30.

    Article  PubMed  Google Scholar 

  8. Marzolini C, Back D, Weber R, Furrer H, Cavassini M, Calmy A, et al. Ageing with HIV: medication use and risk for potential drug-drug interactions. J Antimicrob Chemother. 2011;66(9):2107–11.

    Article  CAS  PubMed  Google Scholar 

  9. Aouri M, Barcelo C, Ternon B, Cavassini M, Anagnostopoulos A, Yerly S, et al. In vivo profiling and distribution of known and novel phase I and phase II metabolites of efavirenz in plasma, urine, and cerebrospinal fluid. Drug Metab Dispos. 2016;44(1):151–61.

    Article  CAS  PubMed  Google Scholar 

  10. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003;306(1):287–300.

    Article  CAS  PubMed  Google Scholar 

  11. Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49(5):513–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mouly S, Lown KS, Kornhauser D, Joseph JL, Fiske WD, Benedek IH, et al. Hepatic but not intestinal CYP3A displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther. 2002;72(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Xu C, Desta Z. In vitro analysis and quantitative prediction of efavirenz inhibition of eight cytochrome P450 (CYP) enzymes: major effects on CYPs 2B6, 2C8, 2C9 and 2C19. Drug Metab Pharmacokinet. 2013;28(4):362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. German P, Greenhouse B, Coates C, Dorsey G, Rosenthal PJ, Charlebois E, et al. Hepatotoxicity due to a drug interaction between amodiaquine plus artesunate and efavirenz. Clin Infect Dis. 2007;44(6):889–91.

    Article  PubMed  Google Scholar 

  15. Wagner C, Pan Y, Hsu V, Grillo JA, Zhang L, Reynolds KS, et al. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration. Clin Pharmacokinet. 2015;54(1):117–27.

    Article  CAS  PubMed  Google Scholar 

  16. Wagner C, Pan Y, Hsu V, Sinha V, Zhao P. Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet. 2016;55(4):475–83.

    Article  CAS  PubMed  Google Scholar 

  17. Moss DM, Marzolini C, Rajoli RKR, Siccardi M. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies. Expert Opin Drug Metab Toxicol. 2015;11(8):1203–17.

    Article  CAS  PubMed  Google Scholar 

  18. Siccardi M, Marzolini C, Seden K, Almond L, Kirov A, Khoo S, et al. Prediction of drug-drug interactions between various antidepressants and efavirenz or boosted protease inhibitors using a physiologically based pharmacokinetic modelling approach. Clin Pharmacokinet. 2013;52(7):583–92.

    Article  CAS  PubMed  Google Scholar 

  19. Siccardi M, Olagunju A, Seden K, Ebrahimjee F, Rannard S, Back D, et al. Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz. In Silico Pharmacol. 2013;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bosgra S, Eijkeren JV, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67.

    Article  PubMed  Google Scholar 

  21. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  22. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.

    Article  CAS  PubMed  Google Scholar 

  23. Rajoli RKR, Back DJ, Rannard S, Meyers F, Flexner C, Owen A, et al. Physiologically based pharmacokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV. Clin Pharmacokinet. 2015;54(6):636–50.

    Article  Google Scholar 

  24. Oswald S, Meyer zu Schwabedissen HE, Nassif A, Modess C, Desta Z, Ogburn ET, et al. Impact of efavirenz on intestinal metabolism and transport: insights from an interaction study with ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2012;91(3):506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9.

    Article  CAS  PubMed  Google Scholar 

  26. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56.

    Article  CAS  PubMed  Google Scholar 

  27. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.

    Article  CAS  PubMed  Google Scholar 

  28. Säll C, Houston JB, Galetin A. A comprehensive assessment of repaglinide metabolic pathways: impact of choice of in vitro system and relative enzyme contribution to in vitro clearance. Drug Metab Dispos. 2012;40(7):1279–89.

    Article  PubMed  Google Scholar 

  29. Filppula AM, Laitila J, Neuvonen PJ, Backman JT. Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations. Drug Metab Dispos. 2011;39(5):904–11.

    Article  CAS  PubMed  Google Scholar 

  30. Jaakkola T, Laitila J, Neuvonen PJ, Backman JT. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol. 2006;99(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  31. Hanioka N, Matsumoto K, Saito Y, Narimatsu S. Functional characterization of CYP2C8.13 and CYP2C8.14: catalytic activities toward paclitaxel. Basic Clin Pharmacol Toxicol. 2010;107(1):565–9.

    Article  CAS  PubMed  Google Scholar 

  32. Abel S, Jenkins TM, Whitlock LA, Ridgway CE, Muirhead GJ. Effects of CYP3A4 inducers with and without CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers. Br J Clin Pharmacol. 2008;65(1):38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varma MVS, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide. Pharm Res. 2013;30(4):1188–99.

    Article  CAS  PubMed  Google Scholar 

  34. Siccardi M, D’Avolio A, Nozza S, Simiele M, Baietto L, Stefani FR, et al. Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet Genomics. 2010;20(12):759–65.

    CAS  PubMed  Google Scholar 

  35. Nieuweboer AJ, Hu S, Gui C, Hagenbuch B, Ghobadi Moghaddam-Helmantel IM, Gibson AA, et al. Influence of drug formulation on OATP1B-mediated transport of paclitaxel. Cancer Res. 2014;74(11):3137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vrouenraets SM, Wit FW, van Tongeren J, Lange JM. Efavirenz: a review. Expert Opin Pharmacother. 2007;8(6):851–71.

    Article  CAS  PubMed  Google Scholar 

  37. Hatorp V, Huang WC, Strange P. Repaglinide pharmacokinetics in healthy young adult and elderly subjects. Clin Ther. 1999;21(4):702–10.

    Article  CAS  PubMed  Google Scholar 

  38. Hegazy SK, Mabrouk MM, Elsisi AE, Mansour NO. Effect of clarithromycin and fluconazole on the pharmacokinetics of montelukast in human volunteers. Eur J Clin Pharmacol. 2012;68(9):1275–80.

    Article  CAS  PubMed  Google Scholar 

  39. Tornio A, Niemi M, Neuvonen PJ, Backman JT. CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab Dispos. 2008;36(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  40. Villalona-Calero MA, Weiss GR, Burris HA, Kraynak M, Rodrigues G, Drengler RL, et al. Phase I and pharmacokinetic study of the oral fluoropyrimidine capecitabine in combination with paclitaxel in patients with advanced solid malignancies. J Clin Oncol. 1999;17(6):1915–25.

    Article  CAS  PubMed  Google Scholar 

  41. Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A. Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos. 2014;42(9):1478–84.

    Article  PubMed  Google Scholar 

  42. Naraharisetti SB, Lin YS, Rieder MJ, Marciante KD, Psaty BM, Thummel KE, et al. Human liver expression of CYP2C8: gender, age, and genotype effects. Drug Metab Dispos. 2010;38(6):889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol. 2005;97(4):249–56.

    Article  CAS  PubMed  Google Scholar 

  44. Maekawa K, Harakawa N, Yoshimura T, Kim SR, Fujimura Y, Aohara F, et al. CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs. Drug Metab Dispos. 2010;38(12):2100–4.

    Article  CAS  PubMed  Google Scholar 

  45. Bidstrup TB, Stilling N, Damkier P, Scharling B, Thomsen MS, Brosen K. Rifampicin seems to act as both an inducer and an inhibitor of the metabolism of repaglinide. Eur J Clin Pharmacol. 2004;60(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  46. Jamis-Dow CA, Pearl ML, Watkins PB, Blake DS, Klecher RW, Collins JM. Predicting drug interactions in vivo from experiments in vitro. Human studies with paclitaxel and ketoconazole. Am J Clin Oncol. 1997;20(6):592–9.

    Article  CAS  PubMed  Google Scholar 

  47. Honkalammi J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses. Clin Pharmacol Ther. 2012;91(5):846–55.

    Article  CAS  PubMed  Google Scholar 

  48. Karonen T, Neuvonen PJ, Backman JT. CYP2C8 but not CYP3A4 is important in the pharmacokinetics of montelukast. Br J Clin Pharmacol. 2012;73(2):257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brännström M, Nordell P, Bonn B, Davis AM, Palmgren AP, Hilgendorf C, et al. Montelukast disposition: no indication of transporter-mediated uptake in OATP2B1 and OATP1B1 expressing HEK293 cells. Pharmaceutics. 2015;7(4):554–64.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol. 2006;61(1):70–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.

    Article  PubMed  Google Scholar 

  52. DrugBank. http://www.drugbank.ca. Accessed 1 Apr 2016.

  53. Chemicalize.org. http://www.chemicalize.org. Accessed 1 Apr 2016.

  54. Hyland R, Dickins M, Collins C, Jones H, Jones B. Maraviroc: in vitro assessment of drug-drug interaction potential. Br J Clin Pharmacol. 2008;66(4):498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brouwer E, Verweij J, De Bruijn P, Loos WJ, Pillay M, Buijs D, et al. Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos. 2000;28(10):1141–5.

    CAS  PubMed  Google Scholar 

  56. Croteau D, Best BM, Letendre S, Rossi SS, Ellis RJ, Clifford DB, et al. Lower than expected maraviroc concentrations in cerebrospinal fluid exceed the wild-type CC chemokine receptor 5-tropic HIV-1 50 % inhibitory concentration. AIDS. 2012;26(7):890–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics. 2009;19(2):129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alani AW, Rao DA, Seidel R, Wang J, Jiao J, Kwon GS. The effect of novel surfactants and Solutol HS 15 on paclitaxel aqueous solubility and permeability across a Caco-2 monolayer. J Pharm Sci. 2010;99(8):3473–85.

    Article  CAS  PubMed  Google Scholar 

  59. Nordisk Novo. Prandin summary of product characteristics. Gatwick: Novo Nordisk; 2012.

    Google Scholar 

  60. Bristol-Myers-Squibb. Sustiva summary of product characteristics. Uxbridge: Bristol-Myers-Squibb; 2011.

    Google Scholar 

  61. Takeda. Actos summary of product characteristics. Taastrup: Takeda; 2013.

    Google Scholar 

  62. Merck Sharp & Dohme. Singulair summary of product characteristics. Hoddesdon: Merck Sharp & Dohme; 2015.

    Google Scholar 

  63. Bristol-Myers-Squibb. Taxol summary of product characteristics. Uxbridge: Bristol-Myers-Squibb; 2011.

    Google Scholar 

  64. ViiV. Selzentry summary of product characteristics. Brentford: ViiV; 2015.

    Google Scholar 

  65. Csajka C, Marzolini C, Fattinger K, Decosterd LA, Fellay J, Telenti A, et al. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther. 2003;73(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng H, Leff JA, Amin R, Gertz BJ, De Smet M, Noonan N, et al. Pharmacokinetics, bioavailability, and safety of montelukast sodium (MK-0476) in healthy males and females. Pharm Res. 1996;13(3):445–8.

    Article  CAS  PubMed  Google Scholar 

  67. Mross K, Holländer N, Hauns B, Schumacher N, Maier-Lenz H. The pharmacokinetics of a 1-h paclitaxel infusion. Cancer Chemother Pharmacol. 2000;45(6):463–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catia Marzolini.

Ethics declarations

CM has been supported by a Grant of the University of Basel (Grant DMS2265) and has received educational Grants from AbbVie, Gilead, and Bristol-Myers-Squibb for her clinical service on drug–drug interactions, and research funding from Janssen. DB has received research Grants from Merck, AbbVie, Gilead, ViiV, Bristol-Myers-Squibb, and Janssen, and travel bursaries from Gilead, ViiV, AbbVie, and Janssen. MS has received research funding from ViiV and Janssen. LE, MB, and RR declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzolini, C., Rajoli, R., Battegay, M. et al. Physiologically Based Pharmacokinetic Modeling to Predict Drug–Drug Interactions with Efavirenz Involving Simultaneous Inducing and Inhibitory Effects on Cytochromes. Clin Pharmacokinet 56, 409–420 (2017). https://doi.org/10.1007/s40262-016-0447-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0447-7

Keywords

Navigation