Skip to main content
Log in

Effects of Food and Pharmaceutical Formulation on Desmopressin Pharmacokinetics in Children

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Introduction

Desmopressin is used for treatment of nocturnal enuresis in children. In this study, we investigated the pharmacokinetics of two formulations—a tablet and a lyophilisate—in both fasted and fed children.

Methods

Previously published data from two studies (one in 22 children aged 6–16 years, and the other in 25 children aged 6–13 years) were analyzed using population pharmacokinetic modeling. A one-compartment model with first-order absorption was fitted to the data. Covariates were selected using a forward selection procedure. The final model was evaluated, and sensitivity analysis was performed to improve future sampling designs. Simulations were subsequently performed to further explore the relative bioavailability of both formulations and the food effect.

Results

The final model described the plasma desmopressin concentrations adequately. The formulation and the fed state were included as covariates on the relative bioavailability. The lyophilisate was, on average, 32.1 % more available than the tablet, and fasted children exhibited an average increase in the relative bioavailability of 101 % in comparison with fed children. Body weight was included as a covariate on distribution volume, using a power function with an exponent of 0.402. Simulations suggested that both the formulation and the food effect were clinically relevant.

Conclusion

Bioequivalence data on two formulations of the same drug in adults cannot be readily extrapolated to children. This was the first study in children suggesting that the two desmopressin formulations are not bioequivalent in children at the currently approved dose levels. Furthermore, the effect of food intake was found to be clinically relevant. Sampling times for a future study were suggested. This sampling design should result in more informative data and consequently generate a more robust model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rocchi F, Tomasi P. The development of medicines for children. Pharmacol Res. 2011;64(3):169–75.

    Article  PubMed  Google Scholar 

  2. Vande Walle J, Stockner M, Raes A, Nørgaard JP. Desmopressin 30 years in clinical use: a safety review. Curr Drug Saf. 2007;2(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rittig S, Knudsen UB, Nørgaard JP, Pedersen EB, Djurhuus JC. Abnormal diurnal rhythm of plasma vasopressin and urinary output in patients with enuresis. Am J Physiol. 1989;256(4 Pt 2):664–71.

    Google Scholar 

  4. Glazener CM, Evans JH. Desmopressin for nocturnal enuresis in children. Cochrane Database Syst Rev. 2002;(3):CD002112.

  5. Robson WLM, Leung AKC, Norgaard JP. The comparative safety of oral versus intranasal desmopressin for the treatment of children with nocturnal enuresis. J Urol. 2007;178(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  6. Van Herzeele C, De Bruyne P, Evans J, Eggert P, Lottmann H, Norgaard JP, Vande Walle J. Safety profile of desmopressin tablet for enuresis in a prospective study. Adv Ther. 2014;31(12):1306–16.

    Article  PubMed  Google Scholar 

  7. Lucchini B, Simonetti GD, Ceschi A, Lava SAG, Faré PB, Bianchetti MG. Severe signs of hyponatremia secondary to desmopressin treatment for enuresis: a systematic review. J Pediatr Urol. 2013;9(6 Pt B):1049–53.

    Article  PubMed  Google Scholar 

  8. Dehoorne JL, Raes AM, van Laecke E, Hoebeke P, Vande Walle JG. Desmopressin toxicity due to prolonged half-life in 18 patients with nocturnal enuresis. J Urol. 2006;176(2):754–8.

    Article  CAS  PubMed  Google Scholar 

  9. Vande Walle J, Van Herzeele C, Raes A. Is there still a role for desmopressin in children with primary monosymptomatic nocturnal enuresis? A focus on safety issues. Drug Saf. 2010;33(4):261–71.

    Article  CAS  Google Scholar 

  10. Ferring Pharmaceuticals. Minirin® Melt: desmopressin. 2007. [Online]. http://secure.healthlinks.net.au/content/ferring/pi.cfm?product=fppminiw10611. Accessed 29 May 2015.

  11. Medicines and Healthcare Products Regulatory Agency (MHRA). License file DDAVP MELT oral lyophilisate (desmopressin acetate). 2006. [Online]. http://www.mhra.gov.uk/home/groups/par/documents/websiteresources/con2023731.pdf. Accessed 28 May 2015.

  12. De Guchtenaere A, Van Herzeele C, Raes A, Dehoorne J, Hoebeke P, Van Laecke E, Vande Walle J. Oral lyophylizate formulation of desmopressin: superior pharmacodynamics compared to tablet due to low food interaction. J Urol. 2011;185(6):2308–13.

    Article  PubMed  Google Scholar 

  13. Rittig S, Jensen AR, Jensen KT, Pedersen EB. Effect of food intake on the pharmacokinetics and antidiuretic activity of oral desmopressin (DDAVP) in hydrated normal subjects. Clin Endocrinol (Oxf). 1998;48:235–41.

    Article  CAS  Google Scholar 

  14. De Bruyne P, De Guchtenaere A, Van Herzeele C, Raes A, Dehoorne J, Hoebeke P, Van Laecke E, Vande Walle J. Pharmacokinetics of desmopressin administered as tablet and oral lyophilisate formulation in children with monosymptomatic nocturnal enuresis. Eur J Pediatr. 2014;173(2):223–8.

    Article  PubMed  Google Scholar 

  15. Østerberg O, Savic RM, Karlsson MO, Simonsson USH, Nørgaard JP, Vande Walle J, Agersø H. Pharmacokinetics of desmopressin administrated as an oral lyophilisate dosage form in children with primary nocturnal enuresis and healthy adults. J Clin Pharmacol. 2006;46(10):1204–11.

    Article  PubMed  Google Scholar 

  16. Wählby U, Bouw MR, Jonsson EN, Karlsson MO. Assessment of type I error rates for the statistical sub-model in NONMEM. J Pharmacokinet Pharmacodyn. 2002;29(3):251–69.

    Article  PubMed  Google Scholar 

  17. Efron B. Better bootstrap confidence intervals. J Am Stat Assoc. 1987;82(397):171–85.

    Article  Google Scholar 

  18. Brendel K, Comets E, Laffont C, Laveille C, Mentré F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the NPDE add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66.

    Article  PubMed  Google Scholar 

  20. Food and Drug Administration (FDA). Guidance for industry bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA. Silver Spring: CDER; 2013.

  21. European Agency for the Evaluation of Medicinal Products (EMEA). Note for guidance on the investigation of bioavailability and bioequivalence. London: EMEA; 2001.

  22. Food and Drug Administration (FDA). Guidance for industry - statistical approaches to establishing bioequivalence. Rockville: CDER; 2001.

  23. Portier K, Keith Tolson J, Roberts SM. Body weight distributions for risk assessment. Risk Anal. 2007;27(1):11–26.

    Article  PubMed  Google Scholar 

  24. Donckels BMR. Optimal experimental design to discriminate among rival dynamic mathematical models. PhD thesis. Ghent: Ghent University; 2009.

  25. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global sensitivity analysis: the primer. Chichester: Wiley; 2008.

    Google Scholar 

  26. Olsson U. Confidence intervals for the mean of a log-normal distribution. J Stat Educ; 2005:13(1).

  27. Food and Drug Administration (FDA). Guidance for industry food-effect bioavailability and fed bioequivalence studies. Rockville: CDER; 2002.

  28. Boeckmann AJ, Sheiner LB, Beal SL. NONMEM users guide—part VIII: help guide. Ellicott City: Icon Development Solutions; 2006.

    Google Scholar 

  29. Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.

    Article  PubMed  Google Scholar 

  30. Piraña: installation guide and manual. 2015. http://www.pirana-software.com. Accessed 2 Sept 2015.

  31. Van Daele T, Van Hoey S, Van Hauwermeiren D, and Van den Bossche J. Biointense package. 2015. https://github.ugent.be/pages/biomath/biointense/. Accessd 2 Sept 2015.

  32. Raybaut P. Documentation Spyder. 2013. https://pythonhosted.org/spyder. Accessed 2 Sept 2015.

  33. Banks HT, Dediu S, Ernstberger SL, Kappel F. Generalized sensitivities and optimal experimental design. J Invers Ill-Posed Probl. 2010;18:1–44.

    Article  Google Scholar 

  34. Tod M, Mentré F, Merlé Y, Mallet A. Robust optimal design for the estimation of hyperparameters in population pharmacokinetics. J Pharmacokinet Biopharm. 1998;26(6):689–716.

    Article  CAS  PubMed  Google Scholar 

  35. Callreus T, Odeberg J, Lundin S. Indirect-response modeling of desmopressin at different levels of hydration. J Pharmacokinet Biopharm. 2000;27(5):513–29.

    Article  Google Scholar 

  36. Agersø H, Larsen LS, Riis A, Lövgren U, Karlsson MO, Senderovitz T. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br J Clin Pharmacol. 2004;58:352–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. van Kerrebroeck P, Norgaard JP. Desmopressin for the treatment of primary nocturnal enuresis. Public Health. 2009;3(4):317–27.

    Google Scholar 

  38. Juul KV, Klein BM, Sandström R, Erichsen L, Nørgaard JP. Gender difference in antidiuretic response to desmopressin. Am J Physiol Renal Physiol. 2011;300(5):F1116–22.

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Sharma N, Zheng W, Ji H, Tam H, Wu X, Manigrasso MB, Sandberg K, Verbalis JG. Sex differences in vasopressin f3V2 receptor expression and vasopressin-induced antidiuresis. Am J Physiol Renal Physiol. 2011;300(2):F433–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Michelet.

Ethics declarations

Funding

This study was supported by the Agency for Innovation by Science and Technology in Flanders (IWT) through the SAFE-PEDRUG Project (IWT/SBO 130033).

Conflict of interest

An Vermeulen is an employee of Johnson & Johnson and holds stock/stock options in Johnson & Johnson. Pauline De Bruyne has received a travel reimbursement from Ferring Pharmaceuticals for a presentation at the Ghent-Aarhus Springschool. Johan Vande Walle has received consulting fees and travel reimbursements from Ferring Pharmaceuticals, and has received payment for lectures from Ferring Pharmaceuticals and Astellas Pharma. Robin Michelet, Lien Dossche, Pieter Colin, Koen Boussery, and Jan Van Bocxlaer have no potential conflicts of interest that might be relevant to the content of this manuscript.

Additional information

R. Michelet, L. Dossche, P. De Bruyne, J.V. Walle, J. Van Bocxlaer and A. Vermeulen: On behalf of the SAFE-PEDRUG Consortium; http://safepedrug.eu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelet, R., Dossche, L., De Bruyne, P. et al. Effects of Food and Pharmaceutical Formulation on Desmopressin Pharmacokinetics in Children. Clin Pharmacokinet 55, 1159–1170 (2016). https://doi.org/10.1007/s40262-016-0393-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0393-4

Keywords

Navigation