Skip to main content
Log in

Abuse-Deterrent Opioid Formulations: Pharmacokinetic and Pharmacodynamic Considerations

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Abuse-deterrent formulations (ADFs) are technologically sophisticated pharmaceutical formulations that impede manipulation and extraction of opioids and/or provoke unpleasant effects when they are taken in excessive quantity. This is implemented by creating physical barriers, inseparably combining the opioid with an opioid antagonist or adding aversive agents to the formulation. These pharmaceutical changes may potentially alter the pharmacokinetics and consequently the pharmacodynamics of the opioid. In this review, comparative evidence on pharmacokinetic differences between abuse-deterrent and classical formulations of the same opioids is summarized; furthermore, pharmacodynamic differences, with a focus on analgesia and abuse-related symptoms, are addressed. Most of the 12 studies comparing opioid pharmacokinetics have judged the physically intact ADF as being bioequivalent to the corresponding classical formulation. Pharmacokinetic differences have, however, been reported with physically manipulated ADFs and have ranged from moderate deviations from bioequivalence to complete changes in the pharmacokinetic profile (e.g. from a sustained-release formulation to a fast-release formulation). Pharmacodynamic effects were assessed in 14 comparative studies, which reported that intact ADFs usually provided clinically equivalent analgesia and clear advantages with respect to their addiction potential. However, withdrawal symptoms could be induced by the ADFs, although rarely and, in particular, when the ADFs had been physically altered. This evidence suggests that opioid ADFs are a working concept resulting in mostly minor pharmacokinetic and pharmacodynamic differences in comparison with classical formulations; however, they may deviate from this equivalence when physically altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. CDC grand rounds: prescription drug overdoses—a US epidemic. MMWR Morb Mortal Wkly Rep. 2012;61(1):10–3.

    Google Scholar 

  2. Casati A, Sedefov R, Pfeiffer-Gerschel T. Misuse of medicines in the European Union: a systematic review of the literature. Eur Addict Res. 2012;18(5):228–45.

    Article  PubMed  Google Scholar 

  3. Gilson AM, Kreis PG. The burden of the nonmedical use of prescription opioid analgesics. Pain Med. 2009;10(Suppl 2):S89–100.

    Article  PubMed  Google Scholar 

  4. Bhamb B, Brown D, Hariharan J, Anderson J, Balousek S, Fleming MF. Survey of select practice behaviors by primary care physicians on the use of opioids for chronic pain. Curr Med Res Opin. 2006;22(9):1859–65.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raffa RB, Pergolizzi JV Jr, Muniz E, Taylor R Jr, Pergolizzi J. Designing opioids that deter abuse. Pain Res Treat. 2012;2012:282981.

    PubMed  PubMed Central  Google Scholar 

  6. Butler SF, Budman SH, Licari A, Cassidy TA, Lioy K, Dickinson J, et al. National Addictions Vigilance Intervention and Prevention Program (NAVIPPRO): a real-time, product-specific, public health surveillance system for monitoring prescription drug abuse. Pharmacoepidemiol Drug Saf. 2008;17(12):1142–54.

    Article  PubMed  Google Scholar 

  7. Manchikanti L, Helm S 2nd, Fellows B, Janata JW, Pampati V, Grider JS, et al. Opioid epidemic in the United States. Pain Physician. 2012;15(3 Suppl):ES9–38.

  8. Alexander L, Mannion RO, Weingarten B, Fanelli RJ, Stiles GL. Development and impact of prescription opioid abuse deterrent formulation technologies. Drug Alcohol Depend. 2014;1(138):1–6.

    Article  Google Scholar 

  9. Mastropietro DJ, Omidian H. Abuse-deterrent formulations: part 1—development of a formulation-based classification system. Expert Opin Drug Metab Toxicol. 2015;11(2):193–204.

    Article  CAS  PubMed  Google Scholar 

  10. Mastropietro DJ, Omidian H. Abuse-deterrent formulations: part 2—commercial products and proprietary technologies. Expert Opin Pharmacother. 2015;16(3):305–23.

    CAS  PubMed  Google Scholar 

  11. Gudin JA, Nalamachu SR. An overview of prodrug technology and its application for developing abuse-deterrent opioids. Postgrad Med. 2015;18:1–9.

    Google Scholar 

  12. Kirsh K, Peppin J, Coleman J. Characterization of prescription opioid abuse in the United States: focus on route of administration. J Pain Palliat Care Pharmacother. 2012;26(4):348–61.

    Article  PubMed  Google Scholar 

  13. Felden L, Walter C, Harder S, Treede R-D, Kayser H, Drover D, et al. Comparative clinical effects of hydromorphone and morphine: a meta-analysis. Br J Anaesth. 2011;107(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  14. Lourenco LM, Matthews M, Jamison RN. Abuse-deterrent and tamper-resistant opioids: how valuable are novel formulations in thwarting non-medical use? Expert Opin Drug Deliv. 2013;10(2):229–40.

    Article  PubMed  Google Scholar 

  15. Johnson FK, Ciric S, Boudriau S, Kisicki JC, Stauffer J. The relative bioavailability of morphine sulfate and naltrexone hydrochloride extended release capsules (Embeda®) and an extended release morphine sulfate capsule formulation (Kadian®) in healthy adults under fasting conditions. Am J Ther. 2011;18(1):2–8.

    Article  PubMed  Google Scholar 

  16. Katz N, Sun S, Johnson F, Stauffer J. ALO-01 (morphine sulfate and naltrexone hydrochloride) extended-release capsules in the treatment of chronic pain of osteoarthritis of the hip or knee: pharmacokinetics, efficacy, and safety. J Pain. 2010;11(4):303–11.

    Article  CAS  PubMed  Google Scholar 

  17. Ridgway D, Sopata M, Burneckis A, Jespersen L, Andersen C. Clinical efficacy and safety of once-daily dosing of a novel, prolonged-release oral morphine tablet compared with twice-daily dosing of a standard controlled-release morphine tablet in patients with cancer pain: a randomized, double-blind, exploratory crossover study. J Pain Symptom Manage. 2010;39(4):712–20.

    Article  CAS  PubMed  Google Scholar 

  18. Benedek IH, Jobes J, Xiang Q, Fiske WD. Bioequivalence of oxymorphone extended release and crush-resistant oxymorphone extended release. Drug Design Dev Ther. 2011;5:455–63.

    CAS  Google Scholar 

  19. Lee MC, Wanigasekera V, Tracey I. Imaging opioid analgesia in the human brain and its potential relevance for understanding opioid use in chronic pain. Neuropharmacology. 2014;84:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bass A, Stark JG, Pixton GC, Sommerville KW, Zamora CA, Leibowitz M, et al. Dose proportionality and the effects of food on bioavailability of an immediate-release oxycodone hydrochloride tablet designed to discourage tampering and its relative bioavailability compared with a marketed oxycodone tablet under fed conditions: a single-dose, randomized, open-label, 5-way crossover study in healthy volunteers. Clin Ther. 2012;34(7):1601–12.

    Article  CAS  PubMed  Google Scholar 

  21. Soyka M. Buprenorphine and buprenorphine/naloxone soluble-film for treatment of opioid dependence. Expert Opin Drug Deliv. 2012;9(11):1409–17.

    Article  CAS  PubMed  Google Scholar 

  22. Kosten TR, Morgan C, Kleber HD. Treatment of heroin addicts using buprenorphine. Am J Drug Alcohol Abuse. 1991;17(2):119–28.

    Article  CAS  PubMed  Google Scholar 

  23. Harris DS, Jones RT, Welm S, Upton RA, Lin E, Mendelson J. Buprenorphine and naloxone co-administration in opiate-dependent patients stabilized on sublingual buprenorphine. Drug Alcohol Depend. 2000;61(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  24. Harris DS, Mendelson JE, Lin ET, Upton RA, Jones RT. Pharmacokinetics and subjective effects of sublingual buprenorphine, alone or in combination with naloxone: lack of dose proportionality. Clin Pharmacokinet. 2004;43(5):329–40.

    Article  CAS  PubMed  Google Scholar 

  25. Stauffer J, Setnik B, Sokolowska M, Romach M, Johnson F, Sellers E. Subjective effects and safety of whole and tampered morphine sulfate and naltrexone hydrochloride (ALO-01) extended-release capsules versus morphine solution and placebo in experienced non-dependent opioid users: a randomized, double-blind, placebo-controlled, crossover study. Clin Drug Investig. 2009;29(12):777–90.

    Article  CAS  PubMed  Google Scholar 

  26. Kopecky EA, Fleming AB, Noonan PK, Varanasi RK, Grima M, Saim S, et al. Impact of physical manipulation on in vitro and in vivo release profiles of oxycodone DETERx®: an extended-release, abuse-deterrent formulation. J Opioid Manag. 2014;10(4):233–46.

    Article  PubMed  Google Scholar 

  27. Harris SC, Perrino PJ, Smith I, Shram MJ, Colucci SV, Bartlett C, et al. Abuse potential, pharmacokinetics, pharmacodynamics, and safety of intranasally administered crushed oxycodone HCl abuse-deterrent controlled-release tablets in recreational opioid users. J Clin Pharmacol. 2014;54(4):468–77.

    Article  PubMed  Google Scholar 

  28. Perrino PJ, Colucci SV, Apseloff G, Harris SC. Pharmacokinetics, tolerability, and safety of intranasal administration of reformulated OxyContin® tablets compared with original OxyContin® tablets in healthy adults. Clin Drug Investig. 2013;33(6):441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Setnik B, Bramson C, Bass A, Levy-Cooperman N, Malhotra B, Matschke K, et al. Intranasal administration of crushed ALO-02 (extended-release oxycodone with sequestered naltrexone): a randomized, controlled abuse-potential study in nondependent recreational opioid users. J Clin Pharmacol. 2015. doi:10.1002/jcph.552 (Epub 22 May 2015).

    Google Scholar 

  30. Bartoli A, Michna E, He E, Wen W. Efficacy and safety of once-daily, extended-release hydrocodone in individuals previously receiving hydrocodone/acetaminophen combination therapy for chronic pain. Postgrad Med. 2015;127(1):5–12.

    Article  PubMed  Google Scholar 

  31. Malhotra BK, Schoenhard GL, de Kater AW, Friedmann N. The pharmacokinetics of oxycodone and its metabolites following single oral doses of Remoxy®, an abuse-deterrent formulation of extended-release oxycodone, in patients with hepatic or renal impairment. J Opioid Manag. 2015;11(2):157–69.

    Article  PubMed  Google Scholar 

  32. Wallace M, Moulin DE, Rauck RL, Khanna S, Tudor IC, Skowronski R, et al. Long-term safety, tolerability, and efficacy of Oros hydromorphone in patients with chronic pain. J Opioid Manag. 2009;5(2):97–105.

    PubMed  Google Scholar 

  33. Webster LR, Butera PG, Moran LV, Wu N, Burns LH, Friedmann N. Oxytrex minimizes physical dependence while providing effective analgesia: a randomized controlled trial in low back pain. J Pain. 2006;7(12):937–46.

    Article  CAS  PubMed  Google Scholar 

  34. Sunshine A, Axtmayer R, Olson NZ, Laska E, Ramos I. Analgesic efficacy of pentazocine versus a pentazocine–naloxone combination following oral administration. Clin J Pain. 1988;4(1):35–40.

    Article  Google Scholar 

  35. Skarke C, Darimont J, Schmidt H, Geisslinger G, Lötsch J. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther. 2003;73(1):107–21.

    Article  CAS  PubMed  Google Scholar 

  36. Holzer P. Opioid antagonists for prevention and treatment of opioid-induced gastrointestinal effects. Curr Opin Anaesthesiol. 2010;23(5):616–22.

    Article  PubMed  Google Scholar 

  37. Mercadante S, Giarratano A. Combined oral prolonged-release oxycodone and naloxone in chronic pain management. Expert Opin Investig Drugs. 2013;22(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  38. DePriest AZ, Miller K. Oxycodone/naloxone: role in chronic pain management, opioid-induced constipation, and abuse deterrence. Pain Ther. 2014;3(1):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Setnik B, Roland CL, Cleveland JM, Webster L. The abuse potential of Remoxy®, an extended-release formulation of oxycodone, compared with immediate- and extended-release oxycodone. Pain Med. 2011;12(4):618–31.

    Article  PubMed  Google Scholar 

  40. Alho H, Sinclair D, Vuori E, Holopainen A. Abuse liability of buprenorphine–naloxone tablets in untreated IV drug users. Drug Alcohol Depend. 2007;88(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  41. Wong A, Macleod D, Robinson J, Koutsogiannis Z, Graudins A, Greene SL. Oxycodone/naloxone preparation can cause acute withdrawal symptoms when misused parenterally or taken orally. Clin Toxicol. 2015;25:1–4.

    CAS  Google Scholar 

  42. Food and Drug and Administration. News and Events. FDA approves new formulation for OxyContin. 2010. Available from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm207480.htm. Accessed 20 Dec 2015.

  43. Butler SF, Cassidy TA, Chilcoat H, Black RA, Landau C, Budman SH, et al. Abuse rates and routes of administration of reformulated extended-release oxycodone: initial findings from a sentinel surveillance sample of individuals assessed for substance abuse treatment. J Pain. 2013;14(4):351–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sessler NE, Downing JM, Kale H, Chilcoat HD, Baumgartner TF, Coplan PM. Reductions in reported deaths following the introduction of extended-release oxycodone (OxyContin) with an abuse-deterrent formulation. Pharmacoepidemiol Drug Saf. 2014;23(12):1238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rossiter LF, Kirson NY, Shei A, White AG, Birnbaum HG, Ben-Joseph R, et al. Medical cost savings associated with an extended-release opioid with abuse-deterrent technology in the US. J Med Econ. 2014;17(4):279–87.

    Article  PubMed  Google Scholar 

  46. Vosburg SK, Jones JD, Manubay JM, Ashworth JB, Benedek IH, Comer SD. Assessment of a formulation designed to be crush-resistant in prescription opioid abusers. Drug Alcohol Depend. 2012;126(1–2):206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vosburg SK, Jones JD, Manubay JM, Ashworth JB, Shapiro DY, Comer SD. A comparison among tapentadol tamper-resistant formulations (TRF) and OxyContin® (non-TRF) in prescription opioid abusers. Addiction. 2013;108(6):1095–106.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Center for Drug Evaluation and Research. Abuse-deterrent opioids—evaluation and labeling: guidance for industry. US Food and Drug Administration. 2015. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm334743.pdf. Accessed 15 Dec 2015.

  49. Lötsch J, Skarke C, Darimont J, Zimmermann M, Bräutigam L, Geisslinger G, et al. Non-invasive combined surrogates of remifentanil blood concentrations with relevance to analgesia. Naunyn Schmiedebergs Arch Pharmacol. 2013;386(10):865–73.

    Article  PubMed  Google Scholar 

  50. Lötsch J. Pharmacokinetic–pharmacodynamic modeling of opioids. J Pain Symptom Manage. 2005;29(5 Suppl):S90–103.

    Article  PubMed  Google Scholar 

  51. Sverrisdóttir E, Lund TM, Olesen AE, Drewes AM, Christrup LL, Kreilgaard M. A review of morphine and morphine-6-glucuronide’s pharmacokinetic–pharmacodynamic relationships in experimental and clinical pain. Eur J Pharm Sci. 2015;74:45–62.

    Article  PubMed  Google Scholar 

  52. Lemmens HJ, Dyck JB, Shafer SL, Stanski DR. Pharmacokinetic–pharmacodynamic modeling in drug development: application to the investigational opioid trefentanil. Clin Pharmacol Ther. 1994;56(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  53. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991;74:53–63.

    Article  CAS  PubMed  Google Scholar 

  54. Wright PM. Population based pharmacokinetic analysis: why do we need it; what is it; and what has it told us about anaesthetics? Br J Anaesth. 1998;80(4):488–501.

    Article  CAS  PubMed  Google Scholar 

  55. Lötsch J, Skarke C, Schmidt H, Liefhold J, Geisslinger G. Pharmacokinetic modeling to predict morphine and morphine-6-glucuronide plasma concentrations in healthy young volunteers. Clin Pharmacol Ther. 2002;72(2):151–62.

    Article  PubMed  Google Scholar 

  56. Dershwitz M, Walsh JL, Morishige RJ, Connors PM, Rubsamen RM, Shafer SL, et al. Pharmacokinetics and pharmacodynamics of inhaled versus intravenous morphine in healthy volunteers. Anesthesiology. 2000;93(3):619–28.

    Article  CAS  PubMed  Google Scholar 

  57. Brokjaer A, Kreilgaard M, Olesen AE, Simonsson USH, Christrup LL, Dahan A, et al. Population pharmacokinetics of morphine and morphine-6-glucuronide following rectal administration—a dose escalation study. Eur J Pharm Sci. 2015;68:78–86.

    Article  CAS  PubMed  Google Scholar 

  58. Sverrisdóttir E, Foster DJR, Upton RN, Olesen AE, Lund TM, Gabel-Jensen C, et al. Modelling concentration–analgesia relationships for morphine to evaluate experimental pain models. Eur J Pharm Sci. 2014;66C:50–8.

    PubMed  Google Scholar 

  59. Drover DR, Angst MS, Valle M, Ramaswamy B, Naidu S, Stanski DR, et al. Input characteristics and bioavailability after administration of immediate and a new extended-release formulation of hydromorphone in healthy volunteers. Anesthesiology. 2002;97(4):827–36.

    Article  CAS  PubMed  Google Scholar 

  60. Mandema JW, Kaiko RF, Oshlack B, Reder RF, Stanski DR. Characterization and validation of a pharmacokinetic model for controlled-release oxycodone. Br J Clin Pharmacol. 1996;42(6):747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Juul RV, Foster DJR, Upton RN, Andresen T, Graversen C, Drewes AM, et al. Pharmacodynamic modelling of placebo and buprenorphine effects on event-related potentials in experimental pain. Basic Clin Pharmacol Toxicol. 2014;115(4):343–51.

    Article  CAS  PubMed  Google Scholar 

  62. Jensen ML, Foster DJR, Upton RN, Kristensen K, Hansen SH, Jensen N-H, et al. Population pharmacokinetics of buprenorphine following a two-stage intravenous infusion in healthy volunteers. Eur J Clin Pharmacol. 2007;63(12):1153–9.

    Article  CAS  PubMed  Google Scholar 

  63. Comer SD, Sullivan MA, Vosburg SK, Manubay J, Amass L, Cooper ZD, et al. Abuse liability of intravenous buprenorphine/naloxone and buprenorphine alone in buprenorphine-maintained intravenous heroin abusers. Addiction. 2010;105(4):709–18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Ethics declarations

This work was supported by the Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE, JL), Schwerpunkt: Anwendungsorientierte Arzneimittelforschung and the Else Kröner-Fresenius Foundation (EKFS), Research Training Group Translational Research Innovation—Pharma (TRIP, JL). The funders had no role in the method design, data selection and analysis, decision to publish or preparation of the manuscript. Carmen Walter and Claudia Knothe contributed equally to this work. The authors (Carmen Walter, Claudia Knothe and Jörn Lötsch) have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, C., Knothe, C. & Lötsch, J. Abuse-Deterrent Opioid Formulations: Pharmacokinetic and Pharmacodynamic Considerations. Clin Pharmacokinet 55, 751–767 (2016). https://doi.org/10.1007/s40262-015-0362-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0362-3

Keywords

Navigation