Skip to main content
Log in

Pharmacokinetics, Efficacy, and Safety of the Preservative-free Fixed Combination of Tafluprost 0.0015 % and Timolol 0.5 % in Healthy Volunteers: A Phase I Comparison vs. the Corresponding Preservative-free Monotherapies

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Purpose

Plasma concentrations of tafluprost acid and timolol were compared after single (Day 1) and repeated (Day 8) instillations of once-daily tafluprost 0.0015 %-timolol 0.5 % preservative-free (PF) fixed-dose combination (FDC), once-daily PF tafluprost 0.0015 %, and twice-daily PF timolol 0.5 %.

Patients and methods

Fifteen healthy volunteers were randomized to this double-masked, single-center, three-period cross-over study. A wash-out interval of at least 4 weeks separated each three 8-day dosing period. Blood samples were drawn on the first and last day of each dosing period, prior to the morning dose, as well as 5, 10, 15, 30, and 45 min, and 1, 1.5, 2, 4, 8, and 12 h post-dosing. Sample plasma concentrations of tafluprost acid and/or timolol were determined and maximum concentration (C max), area under the concentration-over-time curve from time zero to the last time point with a quantifiable measurement (AUC0–last), and time to maximum concentration were calculated. Intraocular pressure (IOP), adverse events, and ocular/systemic safety variables were also evaluated.

Results

Plasma concentrations of tafluprost acid were low, with similar levels measured subsequent to either single or repeated dosing of PF FDC and PF tafluprost. On both sampling days, concentrations peaked at 10 min after the dose, and were cleared from the blood circulation by 30 min; average C max ranged from 17 to 24 pg/mL, and AUC0–last from 3 to 5 pg*h/mL. Plasma concentrations of timolol were comparable after the first dose of PF FDC or PF timolol. Concentrations peaked at 15 min post-dose and diminished in a similar manner after 2 h; average C max was 800 pg/mL and AUC0–last 3900 pg*h/mL. As expected, PF timolol produced a higher Day 8 pre-dose timolol concentration than PF FDC (235 vs. 37 pg/mL; p < 0.001, respectively). The Day 8 post-dose changes in timolol concentrations were relative to this pre-dose difference. All study treatments were well tolerated and safe. PF FDC seemed to provide the best IOP reduction.

Conclusions

PF FDC demonstrated good IOP-lowering efficacy and displayed similar pharmacokinetic characteristics to the monotherapy agents. Exposure to timolol was reduced via the halved dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40.

    Article  Google Scholar 

  2. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.

    Article  PubMed  Google Scholar 

  3. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyma L, Komaroff E, The Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment: the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2003;121:48–56.

    Article  PubMed  Google Scholar 

  4. Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol. 2008;53:S3–10.

    Article  PubMed  Google Scholar 

  5. European Glaucoma Society. Terminology and guidelines for glaucoma. 4th ed. Savona: PubliComm; 2014. p. 141–2.

    Google Scholar 

  6. Olthoff CM, Schouten JS, van de Borne BW, Webers CA. Noncompliance with ocular hypotensive treatment in patents with glaucoma or ocular hypertension an evidence based review. Ophthalmology. 2005;112:953–61.

    Article  PubMed  Google Scholar 

  7. Denis P. Adverse effects, adherence and cost-benefits in glaucoma treatment. Eur Ophthalmic Rev. 2011;5:116–22.

    Article  Google Scholar 

  8. Higginbotham EJ. Considerations in glaucoma therapy: fixed combinations versus their component medications. Clin Ophthalmol. 2010;4:1–9.

    PubMed  PubMed Central  Google Scholar 

  9. Pisella PJ, Debbasch C, Hamard P, Creuzot-Garcher C, Rat P, Brignole F, Baudouin C. Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: an ex vivo and in vitro study. Invest Ophthalmol Vis Sci. 2004;45:1360–8.

    Article  PubMed  Google Scholar 

  10. Noecker RJ, Herrygers LA, Anwaruddin R. Corneal and conjunctival changes caused by commonly used glaucoma medications. Cornea. 2004;23:490–6.

    Article  PubMed  Google Scholar 

  11. Baudouin C. Detrimental effect of preservatives in eyedrops: implications for the treatment of glaucoma. Acta Ophthalmol. 2008;86:716–26.

    Article  PubMed  Google Scholar 

  12. Liang H, Baudouin C, Pauly A, Brignole-Baudouin F. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02 % benzalkonium chloride. Br J Ophthalmol. 2008;92:1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29:312–34.

    Article  CAS  PubMed  Google Scholar 

  14. Tressler CS, Beatty R, Lemp MA. Preservative use in topical glaucoma medications. Ocul Surf. 2011;9:140–58.

    Article  PubMed  Google Scholar 

  15. Pellinen P, Huhtala A, Tolonen A, Lokkila J, Mäenpää J, Uusitalo H. The cytotoxic effects of preserved and preservative-free prostaglandin analogs on human corneal and conjunctival epithelium in vitro and the distribution of benzalkonium chloride homologs in ocular surface tissues in vivo. Curr Eye Res. 2012;37:145–54.

    Article  CAS  PubMed  Google Scholar 

  16. Stalmans I, Sunaric MG, Cordeiro MF, Hommer A, Rossetti L, Goñi F, Heijl A, Bron A. Preservative-free treatment in glaucoma: who, when, and why. Eur J Ophthalmol. 2013;23:518–25.

    Article  PubMed  Google Scholar 

  17. Brandt JD. Does benzalkonium chloride cause cataract? Arch Ophthalmol. 2003;121:892–3.

    Article  PubMed  Google Scholar 

  18. Rossi GC, Pasinetti GM, Scudeller L, Raimondi M, Lanteri S, Bianchi PE. Risk factors to develop ocular surface disease in treated glaucoma or ocular hypertension patients. Eur J Ophthalmol. 2013;23:296–302.

    Article  PubMed  Google Scholar 

  19. Boimer R, Birt CM. Preservative exposure and surgical outcomes in glaucoma patients: the PESO study. J Glaucoma. 2013;22:730–5.

    Article  PubMed  Google Scholar 

  20. Mastropasqua L, Agnifili L, Mastropasqua R, Fasanella V. Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma. Curr Opin Pharmacol. 2013;13:56–64.

    Article  CAS  PubMed  Google Scholar 

  21. Pisella PJ, Pouliquen P, Baudouin C. Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br J Ophthalmol. 2002;86:418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaenen N, Baudouin C, Pouliquen P, Manni G, Figueiredo A, Zeyen T. Ocular symptoms and signs with preserved and preservative-free glaucoma medications. Eur J Ophthalmol. 2007;17:341–9.

    CAS  PubMed  Google Scholar 

  23. Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma. 2008;17:350–5.

    Article  PubMed  Google Scholar 

  24. Crichton AC, Vold S, Williams JM, Hollander DA. Ocular surface tolerability of prostaglandin analogs and prostamides in patients with glaucoma or ocular hypertension. Adv Ther. 2013;30:260–70.

    Article  CAS  PubMed  Google Scholar 

  25. Mathews PM, Ramulu PY, Friedman DS, Utine CA, Akpek EK. Evaluation of ocular surface disease in patients with glaucoma. Ophthalmology. 2013;120:2241–8.

    Article  PubMed  Google Scholar 

  26. Yee RW. The effect of drop vehicle on the efficacy and side effects of topical glaucoma therapy: a review. Curr Opin Ophthalmol. 2007;18:134–9.

    Article  PubMed  Google Scholar 

  27. Niwano Y, Iwasawa A, Ayaki M. Ocular surface cytotoxicity and safety evaluation of tafluprost, a recently developed anti-glaucoma prostaglandin analog. Ophthalmol Eye Dis. 2014;6:5–12.

    PubMed  PubMed Central  Google Scholar 

  28. Uusitalo H, Kaarniranta K, Ropo A. Pharmacokinetics, efficacy and safety profiles of preserved and preservative-free tafluprost in healthy volunteers. Acta Ophthalmol Suppl (Oxf). 2008;242:7–13.

    Article  Google Scholar 

  29. Hamacher T, Airaksinen J, Saarela V, Liinamaa MJ, Richter U, Ropo A. Efficacy and safety levels of preserved and preservative-free tafluprost are equivalent in patients with glaucoma or ocular hypetension: results from a pharmacodynamics analysis. Acta Ophthalmol Suppl (Oxf). 2008;242:14–9.

    Article  Google Scholar 

  30. Uusitalo H, Chen E, Pfeiffer N, Brignole-Baudouin F, Kaarniranta K, Leino M, Puska P, Palmgren E, Hamacher T, Hofmann G, Petzold G, Richter U, Riedel T, Winter M, Ropo A. Switching from a preserved to a preservative-free prostaglandin preparation in topical glaucoma medication. Acta Ophthalmol. 2010;88:329–36.

    Article  CAS  PubMed  Google Scholar 

  31. Mastropasqua L, Agnifili L, Fasanella V, Curcio C, Ciabattoni C, Mastropasqua R, Toto L, Ciancaglini M. Conjunctival goblet cells density and preservative-free tafluprost therapy for glaucoma: an in vivo confocal microscopy and impression cytology study. Acta Ophthalmol. 2013;91:e397–405.

    Article  PubMed  Google Scholar 

  32. Lorenz L, Pfeiffer N. Efficacy and safety of tafluprost 0.0015 % and timolol maleate 0.5 % fixed combination in patients with ocular hypertension or open-angle glaucoma. Expert Opin Pharmacother. 2014;15:2255–62.

    Article  CAS  PubMed  Google Scholar 

  33. Holló G, Topouzis F, Fechtner RD. Fixed-combination intraocular pressure-lowering therapy for glaucoma and ocular hypertension: advantages in clinical practice. Expert Opin Pharmacother. 2014;15:1737–47.

    Article  PubMed  Google Scholar 

  34. Pfeiffer N, Traverso CE, Lorenz K, Saarela V, Liinamaa J, Uusitalo H, Astakhov Y, Boiko E, Ropo A. A, 6-month study comparing efficacy, safety, and tolerability of the preservative-free fixed combination of tafluprost 0.0015 % and timolol 0.5 % versus each of its individual preservative-free components. Adv Ther. 2014;31:1228–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holló G, Hommer A, López A, Ropoo A. Efficacy, safety, and tolerability of preservative-free fixed combination of tafluprost 0.0015 %/timolol 0.5 % versus concomitant use of the ingredients. J Ocula Pharmacol Ther. 2014;30:468–75.

    Article  Google Scholar 

  36. Holló G, Vuorinen J, Tuominen J, Huttunen T, Ropo A, Pfeiffer N. Fixed-dose combination of tafluprost and timolol in the treatment of open-angle glaucoma and ocular hypertension: comparison with other fixed-combination products. Adv Ther. 2014;31:932–44.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Locke CS. Use of a more general model for bioavailability studies. Commun Stat Theory Methods. 1990;19:3361–73.

    Article  Google Scholar 

  38. European Medicines Agency. Guideline on the investigation of bioequivalence. London: EMEA/CHMP; 2010.

    Google Scholar 

  39. Konstas AGP, Haidich A-B, Rossetti L, Webers C. Prostaglandin-timolol fixed combinations efficacy: myth or reality? Eur J Ophthalmol. 2012;22:1–4.

    Article  PubMed  Google Scholar 

  40. Quaranta L, Biagioli E, Riva I, Rulli E, Poli D, Katsanos A, Floriani I. Prostaglandin analogs and timol-fixed versus unfixed combinations or monotherapy for open-angle glaucoma: a systematic review and meta-analysis. J Ocul Pharmacol Ther. 2013;29:382–9.

    Article  CAS  PubMed  Google Scholar 

  41. Juzych MS, Zimmerman TJ. Beta blockers. In: Zimmerman TJ, Kooner KS, Sharil M, Fechtner RD, editors. Textbook of ocular pharmacology. Philadelphia: Lippincott-Raven; 1977. p. 261–75.

    Google Scholar 

  42. Uusitalo H, Niño J, Tahvanainen K, Turjanmaa V, Ropo A, Tuominen J, Kähönen M. Efficacy and systemic side-effects of topical 0.5 % timolol aqueous solution and 0.1 % timolol hydrogel. Acta Ophthalmol Scand. 2005;83:723–8.

    Article  CAS  PubMed  Google Scholar 

  43. Santen Oy. Taptiqom 15 micrograms/ml + 5 mg/ml eye drops, solution in single-dose container: summary of product characteristics. 2014. http://www.mhra.gov.uk/spc-pil/. Accessed 4 Sep 2015.

Download references

Acknowledgments

The authors received editorial and writing support in the preparation of this manuscript, funded by Santen Oy, Tampere, Finland. The authors were fully responsible for the text, data, and editorial decisions for the paper. The authors would like to thank Oy 4Pharma Ltd, Finland, especially Jouni Vuorinen for writing assistance and Tommi Pesonen for performing the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kaarniranta.

Ethics declarations

Disclosure

All the authors have received funding from Santen Oy, Tampere, Finland for the research carried out in this paper; Auli Ropo is an employee of Santen Oy. The manuscript has not been presented at any meetings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaarniranta, K., Ikäheimo, K., Mannermaa, E. et al. Pharmacokinetics, Efficacy, and Safety of the Preservative-free Fixed Combination of Tafluprost 0.0015 % and Timolol 0.5 % in Healthy Volunteers: A Phase I Comparison vs. the Corresponding Preservative-free Monotherapies. Clin Pharmacokinet 55, 485–494 (2016). https://doi.org/10.1007/s40262-015-0331-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0331-x

Keywords

Navigation