Skip to main content
Log in

Investigation of Saliva as an Alternative to Plasma Monitoring of Voriconazole

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Therapeutic drug monitoring (TDM) of voriconazole is increasingly being implemented in clinical practice. However, as blood sampling can be difficult in paediatric and ambulatory patients, a non-invasive technique for TDM is desirable. The aim of this study was to compare the pharmacokinetics of voriconazole in saliva with the pharmacokinetics of unbound and total voriconazole in plasma in order to clinically validate saliva as an alternative to plasma in voriconazole TDM.

Methods

In this pharmacokinetic study, paired plasma and saliva samples were taken at steady state in adult haematology and pneumology patients treated with voriconazole. Unbound and bound plasma voriconazole concentrations were separated using high-throughput equilibrium dialysis. Voriconazole concentrations were determined with liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were calculated using log-linear regression.

Results

Sixty-three paired samples were obtained from ten patients (seven haematology and three pneumology patients). Pearson’s correlation coefficients (R values) for saliva versus unbound and total plasma voriconazole concentrations showed a very strong correlation, with values of 0.970 (p < 0.001) and 0.891 (p < 0.001), respectively. Linear mixed modelling revealed strong agreement between voriconazole concentrations in saliva and unbound plasma voriconazole concentrations, with a mean bias of −0.03 (95 % confidence interval −0.14 to 0.09; p = 0.60). For total concentrations below 10 mg/L, the mean ratio of saliva to total plasma voriconazole concentrations was 0.51 ± 0.08 (n = 63), which did not differ significantly (p = 0.76) from the unbound fraction of voriconazole in plasma of 0.49 ± 0.03 (n = 36).

Conclusions

Saliva can serve as a reliable alternative to plasma in voriconazole TDM, and it can easily be implemented in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  2. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55(8):1080–7.

    Article  CAS  PubMed  Google Scholar 

  3. van der Elst KC, Span LF, van Hateren K, Vermeulen KM, van der Werf TS, Greijdanus B, et al. Dried blood spot analysis suitable for therapeutic drug monitoring of voriconazole, fluconazole, and posaconazole. Antimicrob Agents Chemother. 2013;57(10):4999–5004.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Leboulanger B, Guy RH, Delgado-Charro MB. Non-invasive monitoring of phenytoin by reverse iontophoresis. Eur J Pharm Sci. 2004;22(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  5. Patsalos PN, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs by use of saliva. Ther Drug Monit. 2013;35(1):4–29.

    Article  CAS  PubMed  Google Scholar 

  6. Anizan S, Huestis MA. The potential role of oral fluid in antidoping testing. Clin Chem. 2014;60(2):307–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Negrusz A, Cooper G. Clarke’s analytical forensic toxicology. 2nd ed. London: Pharmaceutical Press; 2008.

    Google Scholar 

  8. Fisher DS, van Schalkwyk GI, Seedat S, Curran SR, Flanagan RJ. Plasma, oral fluid, and whole-blood distribution of antipsychotics and metabolites in clinical samples. Ther Drug Monit. 2013;35(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  9. Mullangi R, Agrawal S, Srinivas NR. Measurement of xenobiotics in saliva: is saliva an attractive alternative matrix? Case studies and analytical perspectives. Biomed Chromatogr. 2009;23(1):3–25.

    Article  CAS  PubMed  Google Scholar 

  10. Krasowski MD, McMillin GA. Advances in anti-epileptic drug testing. Clin Chim Acta. 2014;436:224–36.

    Article  CAS  PubMed  Google Scholar 

  11. Bolhuis MS, van Altena R, van Hateren K, de Lange WC, Greijdanus B, Uges DR, et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(8):3676–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lamorde M, Fillekes Q, Sigaloff K, Kityo C, Buzibye A, Kayiwa J, et al. Therapeutic drug monitoring of nevirapine in saliva in Uganda using high performance liquid chromatography and a low cost thin-layer chromatography technique. BMC Infect Dis. 2014;14:473.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bista SR, Lobb M, Haywood A, Hardy J, Tapuni A, Norris R. Development, validation and application of an HPLC–MS/MS method for the determination of fentanyl and nor-fentanyl in human plasma and saliva. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;960:27–33.

    Article  CAS  PubMed  Google Scholar 

  14. Henkin RI. Comparative monitoring of oral theophylline treatment in blood serum, saliva, and nasal mucus. Ther Drug Monit. 2012;34(2):217–21.

    Article  CAS  PubMed  Google Scholar 

  15. Marchei E, Farre M, Pellegrini M, Garcia-Algar O, Vall O, Pacifici R, et al. Pharmacokinetics of methylphenidate in oral fluid and sweat of a pediatric subject. Forensic Sci Int. 2010;196(1–3):59–63.

    Article  CAS  PubMed  Google Scholar 

  16. van der Elst KC, van Alst M, Lub-de Hooge MN, van Hateren K, Kosterink JG, Alffenaar JW, et al. Clinical validation of the analysis of fluconazole in oral fluid in hospitalized children. Antimicrob Agents Chemother. 2014;58(11):6742–6.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Vanstraelen K, Wauters J, deLoor H, Vercammen I, Annaert P, Lagrou K, et al. Protein-binding characteristics of voriconazole determined by high-throughput equilibrium dialysis. J Pharm Sci. 2014;103(8):2565–70.

    Article  CAS  PubMed  Google Scholar 

  18. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Purkins L, Wood N, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46(8):2546–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Michael C, Bierbach U, Frenzel K, Lange T, Basara N, Niederwieser D, et al. Determination of saliva trough levels for monitoring voriconazole therapy in immunocompromised children and adults. Ther Drug Monit. 2010;32(2):194–9.

    CAS  PubMed  Google Scholar 

  21. Vfend prescribing information. 2011. Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=618. Accessed 20 Dec 2014.

  22. Vanstraelen K, Wauters J, Vercammen I, deLoor H, Maertens J, Lagrou K, et al. Impact of hypoalbuminemia on voriconazole pharmacokinetics in adult critically ill patients. Antimicrob Agents Chemother. 2014;58(11):6782–9.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Aerts M, Geys H, Molenberghs G, Ryan LM. Topics in modelling of clustered data. London: CRC/Chapman & Hall; 2002.

    Book  Google Scholar 

  24. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

    Article  CAS  PubMed  Google Scholar 

  25. Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin DK Jr, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos. 2010;38(1):25–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Drummer OH. Introduction and review of collection techniques and applications of drug testing of oral fluid. Ther Drug Monit. 2008;30(2):203–6.

    CAS  PubMed  Google Scholar 

  27. Liu H, Delgado MR. Therapeutic drug concentration monitoring using saliva samples: focus on anticonvulsants. Clin Pharmacokinet. 1999;36(6):453–70.

    Article  CAS  PubMed  Google Scholar 

  28. Moeller J, Lieb R, Meyer AH, Loetscher KQ, Krastel B, Meinlschmidt G. Improving ambulatory saliva-sampling compliance in pregnant women: a randomized controlled study. PLoS One. 2014;9(1):e86204.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dickinson RG, Hooper WD, King AR, Eadie MJ. Fallacious results from measuring salivary carbamazepine concentrations. Ther Drug Monit. 1985;7(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ayers GJ, Burnett D. Drug formulation and salivary phenytoin measurements. Lancet. 1977;1(8012):656.

    Article  CAS  PubMed  Google Scholar 

  31. Jones MD, Ryan M, Miles MV, Tang PH, Fakhoury TA, Degrauw TJ, et al. Stability of salivary concentrations of the newer antiepileptic drugs in the postal system. Ther Drug Monit. 2005;27(5):576–9.

    Article  CAS  PubMed  Google Scholar 

  32. Gorodischer R, Burtin P, Hwang P, Levine M, Koren G. Saliva versus blood sampling for therapeutic drug monitoring in children: patient and parental preferences and an economic analysis. Ther Drug Monit. 1994;16(5):437–43.

    Article  CAS  PubMed  Google Scholar 

  33. Koks CH, Meenhorst PL, Hillebrand MJ, Bult A, Beijnen JH. Pharmacokinetics of fluconazole in saliva and plasma after administration of an oral suspension and capsules. Antimicrob Agents Chemother. 1996;40(8):1935–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Porter R. The Merck manual. 19th ed. Whitehouse Station: Merck & Company; 2006.

    Google Scholar 

  35. Hugen PW, Burger DM, de Graaff M, ter Hofstede HJ, Hoetelmans RM, Brinkman K, et al. Saliva as a specimen for monitoring compliance but not for predicting plasma concentrations in patients with HIV treated with indinavir. Ther Drug Monit. 2000;22(4):437–45.

    Article  CAS  PubMed  Google Scholar 

  36. Damle B, Varma MV, Wood N. Pharmacokinetics of voriconazole administered concomitantly with fluconazole and population-based simulation for sequential use. Antimicrob Agents Chemother. 2011;55(11):5172–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150(2–3):119–31.

    Article  CAS  PubMed  Google Scholar 

  38. Salinas C, Weinzimmer D, Searle G, Labaree D, Ropchan J, Huang Y, et al. Kinetic analysis of drug-target interactions with PET for characterization of pharmacological hysteresis. J Cereb Blood Flow Metab. 2013;33(5):700–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Petra Schelstraete and her team from the University Hospital Ghent for their willingness to cooperate in this project, Ine Vercammen for helping with the patient enrolment, and Pfizer for providing the pure voriconazole substance.

Conflict of interest

K. Vanstraelen has received travel support from Gilead, MSD and Pfizer, and received lecture honoraria from Pfizer. J. Maertens has received research grants from Gilead, MSD, Pfizer and Astellas, received travel support from Gilead, MSD, Pfizer and Astellas, and received lecture honoraria from Gilead, MSD, Pfizer and Astellas. K. Lagrou has received research grants from Gilead, MSD and Pfizer, received travel support from Gilead, MSD and Pfizer, and received lecture honoraria from Gilead, MSD and Pfizer. A. Malfroot received research grants from Wyeth-Pfizer, Novartis and GSK, received lecture honoraria from Gilead, Wyeth-Pfizer, Forest and GSK, received travel support from Gilead, Novartis, Abbott and Pfizer, and participated in advisory boards for Wyeth-Pfizer and GSK. I. Spriet has received research grants from MSD and Pfizer, received travel support from Gilead, MSD and Pfizer, and received lecture honoraria from Gilead, MSD and Pfizer, and remaining authors have no conflict of interest to declare.

Ethical standards

This study (ClinicalTrials.gov study ID: NCT01418846) was conducted in accordance with the Declaration of Helsinki. Approval from the local ethics committees and written informed consent from each subject were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Vanstraelen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanstraelen, K., Maertens, J., Augustijns, P. et al. Investigation of Saliva as an Alternative to Plasma Monitoring of Voriconazole. Clin Pharmacokinet 54, 1151–1160 (2015). https://doi.org/10.1007/s40262-015-0269-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0269-z

Keywords

Navigation