Lavelle EC, Sharif S, Thomas NW, Holand J, Davis SS. The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv Drug Deliv Rev. 1995;18:5–22.
CAS
Google Scholar
Daugherty AL, Mrsny RJ. Regulation of the intestinal epithelial paracellular barrier. Pharm Sci Technol Today. 1999;2:144–51.
CAS
Google Scholar
Thakkar H, Patel B, Thakkar S. A review on techniques for oral bioavailability enhancement of drugs. Int J Pharm Sci Rev Res. 2010;4:203–23.
CAS
Google Scholar
US Food and Drug Administration. Code of federal regulation. Title 21, volume 5, chapter 1, subchapter D, part 320. Bioavailability and bioequivalence reagents.
Badawy SIF, Ghorab MM, Adeyeye CM. Characterization and bioavailability of danazolhydroxypropyl-β-cyclodextrin coprecipitates. Int J Pharm. 1996;128:45–54.
CAS
Google Scholar
Borin MT, Ayres JW. Single dose bioavailability of acetoaminophen following oral administration. Int J Pharm. 1989;54:199–209.
CAS
Google Scholar
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2010;1–7.
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed Engl. 2009;48:872–97.
PubMed Central
CAS
PubMed
Google Scholar
Doherty MM, Pang KS. First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol. 1997;20:329–44.
CAS
PubMed
Google Scholar
Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Depos. 2010;38:1147–58.
CAS
Google Scholar
Arora S, Ali J, Ahuja A, Khar RK, Baboota S. Floating drug delivery systems: a review. AAPS Pharm Sci Tech. 2005;6:E372–90.
Google Scholar
Soppimath KS, Kulkarni AR, Kukulkarni AR, Rudzinski WE, Aminabhavi TM. Microspheres as floating drug-delivery systems to increase gastric retention of drugs. Drug Metab Rev. 2001;33:149–60.
CAS
PubMed
Google Scholar
Gholap SB, Banariee SK, Gaikwad DD, Jadhav SL, Thorat RM. Hollow microspheres: a review. Int J Pharm Sci Rev Res. 2010;1:74–9.
CAS
Google Scholar
Hirtz J. The gastrointestinal absorption of drugs in man: a review of current concepts and methods of investigation. Br J Clin Pharmacol. 1985;19:17S–83S.
Google Scholar
Goyel M, Prajapati R, Purohit KK, Mehta SC. Floating drug delivery system. J Curr Pharm Res. 2011;5:7–18.
Google Scholar
Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Release. 2000;63:235–59.
CAS
PubMed
Google Scholar
Nayak AK, Maji R, Das B. Gastroretentive drug delivery systems: a review. Asian J Pharm Clin Res. 2010;3:1–10.
Google Scholar
Mullertz A. Oral drug absorption, 2nd edn. Ebook;2010.
Melander A. Influence of food on the bioavailability of drugs. Clin Pharmacokinet. 1978;3(5):337–51.
CAS
PubMed
Google Scholar
Winstanley PA, Orme LE. The effect of food on drug bioavailability. Br J Clin Pharmacol. 1989;28:621–8.
PubMed Central
CAS
PubMed
Google Scholar
Cebrian MJC, Zornoza T, Granero L, Polache A. Intestinal absorption enhancement via paracellular route by fatty acids, chitosans and other: a target for drug delivery. Curr Drug Deliv. 2005;2:9–22.
Google Scholar
Stenberg P, Luthaman K, Artursson P. Virtual screening of intestinal drug permeability. J Control Release. 2000;65:231–43.
CAS
PubMed
Google Scholar
Simon DB, Lu Y, Choate KA, Velazquez H, Sabban AE, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2 resorption. Science. 1999;285:103–6.
CAS
PubMed
Google Scholar
Werle M, Samhaber A, Bernkop-Schnurch A. Degradation of teriparatide by gastro-intestinal proteolytic enzymes. J Drug Target. 2006;14:109–15.
CAS
PubMed
Google Scholar
Svenson S, Chauhan AS. Dendrimers for enhanced drug solubilization. Nanomedicine. 2008;3(5):679–702.
CAS
PubMed
Google Scholar
Lipinski CA. Drug like properties and the cause of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.
CAS
PubMed
Google Scholar
Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.
PubMed
Google Scholar
Veber DF, Johnson SR, Cheng H, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23.
CAS
PubMed
Google Scholar
Ungell AL, Nylander S, Bergstrand S, Sjönerg A, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87:360–6.
CAS
PubMed
Google Scholar
Vemulapalli V, Khan NM, Jasti B. Physicochemical characteristics that influence the transport of drugs across intestinal barrier. AAPS News Mag. 2007:18–21.
Rasheed A, Kumar CK, Sravanthi VNSS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm. 2008;76:567–98.
CAS
Google Scholar
Farh A, Liu X. Drug delivery strategies for poorly water soluble drugs. Expert Opin Drug Deliv. 2007;4:403–16.
Google Scholar
Mehramizi A, Monfared AE, Pourfarzib M, Bayati KH, Dorkoosh FA, Rafiee T. Influence of β-cyclodextrin complexation on lovastatin release from osmotic pump tablets (OPT). DARU. 2007;15(2):71–8.
CAS
Google Scholar
Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm. 2001;225:15–30.
CAS
PubMed
Google Scholar
Ueda H, Ou D, Endo T, Nagase H, Tomono K, Nagai T. Evaluation of a sulfobutyl ether beta-cyclodextrin as a solubilizing/stabilizing agent for several drugs. Drug Dev Ind Pharm. 1998;24:863–7.
CAS
PubMed
Google Scholar
Li J, Guo Y, Zografi G. The solid-state stability of amorphous quinapril in the presence of βCD. J Pharm Sci. 2002;91:229–43.
CAS
PubMed
Google Scholar
Szejtli J. Cyclodextrins and their inclusion complexes. Starch. 1982. doi:10.1002/star.19820341113.
Google Scholar
Uekama K, Otagiri M. Drug carrier system—a review. Crit Rev Ther Drug Care Syst. 1987;3:1–12.
CAS
Google Scholar
Mayur CA. Senthikumaran. Cyclodextrin in drug delivery: a review. Res Rev J Pharm Pharm Sci. 2012;1(1):19–29.
Google Scholar
Sekiguchi K, Obi N. Studies on absorption of eutectic mixture: I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9:866–72.
CAS
Google Scholar
Goldberg AH, Galbaldi M, Kanig KL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III. Experimental evaluation of griseofulvin-succinic acid solution. J Pharm Sci. 1966;55:487–92.
CAS
Google Scholar
Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.
CAS
PubMed
Google Scholar
Sharma A, Jain CP. Solid dispersion: a promising technique to enhance solubility of poorly water soluble drug. Int J Drug Deliv. 2011;3:149–70.
CAS
Google Scholar
Khandare JJ, Chandna P, Wang Y, Pozharov VP, Minko T. Novel polymeric prodrug with multivalent component for cancer therapy. J Pharmacol Exp Ther. 2006;317(3):929–37.
CAS
PubMed
Google Scholar
Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010. doi:10.5001/omj.2010.24.
PubMed Central
PubMed
Google Scholar
Tiwari G, Tiwari R, Pranay W, Wal A, Rai AK. Primary and novel approaches for colon targeted drug delivery: a review. Int J Drug Deliv. 2010;2:1–11.
CAS
Google Scholar
Junginger HE. Polymeric permeation enhancers. Oral Deliv Macromol Drugs. 2009. doi:10.1007/978-1-4419-0200-9_6.
Google Scholar
Singh N, Gupta P, Bhattacharyya A. Enhancement of intestinal absorption of poorly absorbed ceftriaxone sodium by using mixed micelles of polyoxy ethylene (20) cetyl ether & oleic acid as peroral absorption enhancers. Arch Appl Sci Res. 2010;2(3):131–42.
Google Scholar
Whitehead K, Karr N, Mitragotri S. Safe and effective permeation enhancers for oral drug delivery. Pharm Res. 2007. doi:10.1007/s11095-007-9488-9.
PubMed
Google Scholar
Chauhan NS, Alam S, Mittal A, Bajaj U. A description on study of intestinal barrier, drug permeability and permeation enhancers. Int J Clin Pharmacol Toxicol. 2013;2:501.
Holmes EH, Devalapally H, Li L, Perdue ML, Ostrander GK. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment. PLoS One. 2013;8:1–7.
Google Scholar
Gupta V, Hwang BH, Doshi N, Mitragotri S. A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J Control Release. 2013;172(2):541–9.
CAS
PubMed
Google Scholar
Bansode SS, Banarjee SK, Gaikwad DD, Jadhav SL, Thorat RM. Microencapsulation: a review. Int J Pharm Sci Rev Res. 2010;1:38–43.
CAS
Google Scholar
Singh MN, Hemant KSY, Shivakumar HG. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci. 2010;5(2):65–77.
PubMed Central
CAS
PubMed
Google Scholar
Siepmann J, Siepmann F. Microparticles used as drug delivery systems. Prog Coll Pol Sci. 2006;133:15–21.
CAS
Google Scholar
Padalkar AN, Sadhana R, Shahi SR. Microparticles: an approach for betterment of drug delivery system. Int J Pharma Res Dev. 2011;3:99–115.
Google Scholar
Upadhyay MS, Pathak K. Glyceryl monooleate-coated bioadhesive hollow microspheres of riboflavin for improved gastroretentivity: optimization and pharmacokinetics. Drug Deliv Transl Res. 2013;3:209–23.
CAS
Google Scholar
Srivastava R, Kumar D, Pathak K. Colonic luminal surface retentive meloxicam microsponges delivered by erosion based colon targeted matrix tablet. Int J Pharm. 2012;427:156–62.
Google Scholar
Arya P, Pathak K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int J Pharm. 2014;460:1–12.
CAS
PubMed
Google Scholar
Sigfridsson K, Nordmark A, Theilig S, Lindahl A. A formulation comparison between micro- and nanosuspensions: the importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev Ind Pharm. 2011;37(2):185–92.
CAS
PubMed
Google Scholar
Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.
CAS
PubMed
Google Scholar
Muller RH, Gohla S, Keck CM. State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78:1–9.
PubMed
Google Scholar
Nasimi P, Haidari M. Medical use of nanoparticles drug delivery and diagnosis diseases. Int J Green Nanotechnol. 2013. doi:10.1177/1943089213506978.
Google Scholar
Junghanns JUAH, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed. 2008;3:295–309.
CAS
Google Scholar
Pawar VK, Yuvraj Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014;183:51–66.
Müller RH, Shegokar R, Gohla S, Keck CM. Nanocrystals: production, cellular drug delivery, current and future products. Fund Biomed Technol. 2011;5:411–32.
Google Scholar
Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.
CAS
PubMed
Google Scholar
Song J, Wang Y, Song Y, Chan H, Bi C, Yang X, et al. Development and characterisation of ursolic acid nanocrystals without stabiliser having improved dissolution rate and in vitro anticancer activity. AAPS PharmSciTech. 2014. doi:10.1208/s12249-013-0028-0.
PubMed Central
Google Scholar
Moeschwitzer J. Nanotechnology: particle size reduction technologies in the pharmaceutical development process. Am Pharm Rev. 2010;54–59.
Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63:456–469. doi:10.1016/j.addr.2011.02.001.
Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3–16.
CAS
PubMed
Google Scholar
Chan HK, Kwok PC. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011;63(6):406–16.
CAS
PubMed
Google Scholar
Li Y, Yue PF, Hu PY, Wu ZF, Yang M, Yuan HL. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production—a case study with ursodeoxycholic acid. Pharm Dev Technol. 2014;19(6):662–70.
CAS
PubMed
Google Scholar
Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm. 2011;415(1–2):293–300.
CAS
PubMed
Google Scholar
Sinha B, Müller RH, Möschwitzer JP. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals. Int J Pharm. 2013;458(2):315–23.
CAS
PubMed
Google Scholar
Sarnes A, Kovalainen M, Häkkinen MR, Laaksonen T, Laru J, Kiesvaara J, et al. Nanocrystal-based per-oral itraconazole delivery: superior in vitro dissolution enhancement versus Sporanox® is not realized in in vivo drug absorption. J Control Release. 2014;180:109–16.
CAS
PubMed
Google Scholar
Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–44.
CAS
PubMed
Google Scholar
Patel K, Patil A, Mehta M, Gota V, Vavia P. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: preparation, characterization and antitumor activity. Int J Pharm. 2014;472(1–2):214–23.
CAS
PubMed
Google Scholar
Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40:325–34.
CAS
PubMed
Google Scholar
Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials. 2010;31:6597–611.
CAS
PubMed
Google Scholar
Zhao L, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci. 2010;99(8):3552–60.
CAS
PubMed
Google Scholar
Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99(4):1871–81.
CAS
PubMed
Google Scholar
Zhang J, Lv H, Jiang K, Gao Y. Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int J Pharm. 2011;420(1):180–8.
CAS
PubMed
Google Scholar
Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230–9.
CAS
PubMed
Google Scholar
Thadkala K, Nanam PK, Aukunuru J. Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int.J Pharm Investig. 2014;4(3):131–37.
Shi-Ying J, Jin H, Shi-Xiao J, Qing-Yuan L, Jin-Xia B, Chen HG. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method. Chin J Nat Med. 2014;12(1):71–80.
PubMed
Google Scholar
Luo C, Yan L, Sun J, Zhang Y, Chen Q, Liu X, He Z. Felodipine nanosuspension: a faster dissolution rate and higher oral absorption efficiency. J Drug Del Sci Technol. 2014;24(2):173–7.
CAS
Google Scholar
Borhade V, Pathak S, Sharma S, Patravale V. Formulation and characterization of atovaquone nanosuspension for improved oral delivery in the treatment of malaria. Nanomed (Lond). 2014;9(5):649–66.
CAS
Google Scholar
Fu Q, Sun J, Zhang D, Li M, Wang Y, Ling G. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;109:161–6.
CAS
PubMed
Google Scholar
Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B Biointerfaces. 2013;108:366–73.
CAS
PubMed
Google Scholar
Ravichandran R. Pharmacokinetic study of nanoparticulate curcumin: oral formulation for enhanced bioavailability. J Biomat Nanobiotechnol. 2013;4:291–9.
CAS
Google Scholar
Quan P, Xia D, Piao H, Piao H, Shi K, Jia Y, et al. Nitrendipine nanocrystals: its preparation, characterization, and in vitro–in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1136–43.
PubMed Central
CAS
PubMed
Google Scholar
Ravichandran R. In vivo pharmacokinetic studies of albendazole nanoparticulate oral formulations for improved bioavailability. Int J Green Nanotech Biomed. 2010. doi:10.1080/1943085x.2010.488200.
Google Scholar
Shah M, Chuttani K, Mishra AK, Pathak K. Oral solid Compritol 888 ATO nanosuspension of simvastatin: optimization and biodistribution studies. Drug Dev Ind Pharm. 2011;37(5):526–37.
CAS
PubMed
Google Scholar
Pokharkar VB, Malhi T, Mandpe L. Bicalutamide nanocrystal with improved oral bioavailability: in vitro and in vivo evaluation. Pharm Dev Technol. 2013. doi:10.3109/10837450.2012.663391.
Google Scholar
Gao F, Zhang Z, Bu H, Huang Y, Gao Z, Shen J. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: performance and mechanism. J Control Release. 2011;149:68–74.
Google Scholar
Landfester K, Willert M, Antonietti M. Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules. 2000;33(7):2370–6.
CAS
Google Scholar
Usón N, García MJ, Solans C. Formation of water-in-oil (w/o) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloid Surf A Physicochem Eng Asp. 2004;250:415–21.
Google Scholar
Morales D, Gutiérrez JM, Garcia-Celma JM, Solans C. A study of the relation between bicontinuous microemulsions and oil/water nanoemulsion formation. Langmuir. 2003;19:7196–200.
CAS
Google Scholar
Laouini A, Fessi H, Charcosset C. Membrane emulsification: a promising alternative for vitamin E encapsulation within nano-emulsion. J Membrane Sci. 2012;423–424:85–96.
Google Scholar
Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, Pal TP. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity inhypertensive rats. Colloid Surf B. 2014;115:286–94.
CAS
Google Scholar
Singh S, Kamla Pathak K, Bali V. Product development studies on surface-adsorbed nanoemulsion of olmesartan medoxomil as a capsular dosage form. AAPS PharmSciTech. 2012;13:1212–21.
PubMed Central
CAS
PubMed
Google Scholar
Devalapally H, Silchenko S, Zhou F, Owen A, Hidalgo IJ. Evaluation of a nanoemulsion formulation strategy for oral bioavailability enhancement of danazol in rats and dogs. J Pharm Sci. 2013;102(10):3808–15.
PubMed Central
CAS
PubMed
Google Scholar
Chavhan SS, Petkar KC, Sawant KK. Simvastatin nanoemulsion for improved oral delivery: design, characterisation, in vitro and in vivo studies. J Microencapsul. 2013;30(8):771–9.
CAS
PubMed
Google Scholar
Belhaj N, Dupuis F, Tehrany EA, Denis FD, Paris C, Lartaud I, et al. Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions. Eur J Pharm Sci. 2012;47:305–12.
CAS
PubMed
Google Scholar
Shen Q, Wang Y, Zhang Y. Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. Int J Nanomed. 2011;6:1237–43.
CAS
Google Scholar
Choudhury H, Gorain B, Karmakar S, Biswas E, Dey G, Barik R. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int J Pharm; 460:131–43.
Sessa M, Balestrieri ML, Ferrari G, Servillo L, Castaldo D, Onofrio ND. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 2014;147:42–50.
CAS
PubMed
Google Scholar
Jain K, Kumar RS, Sood S, Gowthamarajan K. Enhanced oral bioavailability of atorvastatin via oil-in-water nanoemulsion using aqueous titration method. J Pharm Sci Res. 2013;5(1):18–25.
CAS
Google Scholar
Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem. 2012;60:5373–9.
CAS
PubMed
Google Scholar
Ma Y, Li HG, Guan SX. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev Ind Pharm. 2014;12:1–6.
Google Scholar
Chhabra G, Chuttani K, Mishra AK, Pathak K. Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug Dev Ind Pharm. 2011;37(8):907–16.
CAS
PubMed
Google Scholar
Zhao L, Wei Y, Fu J. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomed. 2013;8:3769–79.
Google Scholar
Sukanya G, Mantry S, Shireen A. Review on nanoemulsion. Int J Innov Pharm Sci Res. 2013;1(2):192–205.
Google Scholar
Bruxel F, Cojean S, Bochot A, Teixeira H, Bories C, Loiseau PM, Fattal E. Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II. Int J Pharm. 2011;416(2):402–9.
CAS
PubMed
Google Scholar
Bruxel F, Bochot A, Diel D, Fattal E, Teixeira HF. Adsorption of antisense oligonucleotides targeting malarial topoi-somerase II on cationic nanoemulsions optimized by a full factorial design. Curr Topics Med Chem. 2014;14(9):1161–71.
CAS
Google Scholar
Li X, Xu Y, Chen G, Wei P, Ping Q. PLGA nanoparticles for the oral delivery of 5-fluorouracil using high pressure homogenization—emulsification as the preparation method and in vitro/in vivo studies. Drug Dev Ind Pharm. 2008;34:107–15.
CAS
PubMed
Google Scholar
Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007;8:3054–60.
CAS
PubMed
Google Scholar
Bharadwaj V, Ravikumar MNV. Polymeric nanoparticles for oral delivery. New York: Taylor and Francis; 2006.
Google Scholar
Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst. 2005;22:419–64.
CAS
PubMed
Google Scholar
Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapineloaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater. 2011;7:4169–76.
CAS
PubMed
Google Scholar
Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN. Chitosan–pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomed. 2012;7:1851–63.
CAS
Google Scholar
Joshi G, Kumar A, Sawant K. Enhanced bioavailability and intestinal uptake of gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci. 2014;60:80–9.
CAS
PubMed
Google Scholar
Suwannateep N, Banlunara W, Wanichweeharumgruang SP, Chiablaem K, Lirdprapamongkol K, Svast J. Mucoadhesive curcumin nanospheres: biological activity adhesion to stomach mucosa and release of curcumin into circulation. J Control Release. 2011;151:176–82.
CAS
PubMed
Google Scholar
Yang YY, Wang Y, Powell R, Chan P. Polymeric core-shell nanoparticles for therapeutics. Clin Exp Pharmacol Physiol. 2006;33:557–62.
CAS
PubMed
Google Scholar
Bolmal UB, Manvi FV, Kotha Rajkumar K, Palla SS, Paladugu A, Reddy KR. Recent advances in nanosponges as drug delivery system. Int J Pharm Sci Nanotechnol. 2013;6.
Sharma R, Pathak K. Nanosponges: emerging drug delivery system. Pharma Stud. 33–35.
Thomas N, Holm R, Mullertz A, Rades T. In vitro and in vivo performance of novel supersaturated selfnanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.
CAS
PubMed
Google Scholar
Porter CJH, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.
CAS
PubMed
Google Scholar
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.
CAS
PubMed
Google Scholar
Nangwade BK, Patel DJ, Udhani RA, Manvi FV. Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm. 2011;79(4):705–25.
Google Scholar
Date AA, Desai N, Dixit R, et al. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomed. 2010;5(10):1595–616.
CAS
Google Scholar
Jing-Ling T, Jin S, Zhong-Gui H. Emulsifying drug delivery systems: strategy for improving oral delivery of poorly soluble drugs. Curr Drug Ther. 2007;2:85–93.
Google Scholar
Patel A, Shelat P, Lalwani A. Development and optimization of solid self-nanoemulsifying drug delivery system (S-SNEDDS) using Scheffe’s design for improvement of oral bioavailability of nelfinavir mesylate. Drug Deliv Transl Res. 2014;4:171–86.
CAS
PubMed
Google Scholar
Heshmati N, Cheng X, Eisenbrand G, Fricker G. Enhancement of oral bioavailability of e804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats. J Pharm Sci. 2013;102(10):3792–9.
CAS
PubMed
Google Scholar
Sakloetsakun D, Dünnhaupt S, Barthelmes J, Perera G, Schnürch AB. Combining two technologies: multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Int J Biol Macromol. 2013;61:363–72.
CAS
PubMed
Google Scholar
Quan Q, Kim DW, Marasini N, Kim DH, Kim JK, Kim JO. Physicochemical characterization and in vivo evaluation of solid self-nanoemulsifying drug delivery system for oral administration of docetaxel. J Microencapsul. 2013;30(4):307–14.
CAS
PubMed
Google Scholar
Seo YG, Kim DH, Ramasamy T, Kim JH, Marasini N, Oh YK. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm. 2013;452(1–2):412–20.
CAS
PubMed
Google Scholar
Mahmoud DB, Shukr MH, Bendas ER. In vitro and in vivo evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and parenteral administration. Int J Pharm. 2014;476(1–2):60–9.
CAS
PubMed
Google Scholar
Singh B, Singh R, Bandyopadhyay S, Kapil R, Garg B. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloid Surf B. 2013;101:465–74.
CAS
Google Scholar
Bajaj A, Rao MRP, Khole I, Munjapara G. Self emulsifying drug delivery system of cefpodoxime proxetil containing tocopherol polyethylene glycol succinate. Drug Dev Ind Pharm. 2013;39(5):635–45.
CAS
PubMed
Google Scholar
Janga KY, Jukanti R, Sunkavalli S, Kandadi P, Veerareddy PR. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders. J Microencapsul. 2013;30(2):161–72.
CAS
PubMed
Google Scholar
Kumar SR, Syamala SU, Revathi P, Raghuveer P, Gowthamarajan K. Self nanoemulsifying drug delivery system of olanzapine for enhanced oral bioavailability: in vitro, in vivo characterisation and in vitro -in vivo correlation. J Bioequiv Availab. 2013. doi:10.4172/jbb.1000159.
Google Scholar
Kamel AO, Mahmoud AA. Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. J Biomed Nanotechnol. 2013;9(1):26–39.
CAS
PubMed
Google Scholar
Akhter MH, Ahmad A, Ali J, Mohan G. Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. J Pharm Innovat. 2014;9(2):121–31.
Google Scholar
Jain AK, Thanki K, Jain S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part II in vivo pharmacokinetics, antitumor efficacy and hepatotoxicity. Pharm Res. 2014;31(4):946–58.
CAS
PubMed
Google Scholar
Singh G, Pai RS. Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: in vitro/in vivo characterization. Expert Opin Drug Deliv. 2014;11(7):1023–32.
CAS
PubMed
Google Scholar
Patel J, Dhingani A, Garala K, Raval M, Sheth N. Quality by design approach for oral bioavailability enhancement of irbesartan by self-nanoemulsifying tablets. Drug Deliv. 2014;21(6):412–35.
CAS
PubMed
Google Scholar
Zhang Z, Huang J, Jiang S, Liu Z, Gu W, Yu H, Li Y. A high-drug-loading self-assembled nanoemulsion enhances the oral absorption of probucol in rats. J Pharm Sci. 2013;102(4):1301–6.
CAS
PubMed
Google Scholar
Zhang J, Peng Q, Shi S, Gong T, Zhang Z. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin–phospholipid complex. Int J Nanomed. 2011;6:3405–14.
CAS
Google Scholar
Patel J, Patel A, Raval M, Sheth N. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J Adv Pharm Technol Res. 2011;2(1):9–16.
PubMed Central
CAS
PubMed
Google Scholar
Ruan J, Liu J, Zhu D, Hao X, Zhang Z. Preparation and evaluation of self-nanoemulsified drug delivery systems (SNEDDSs) of matrine based on drug–phospholipid complex technique. Int J Pharm. 2010;386(1–2):282–90.
CAS
PubMed
Google Scholar
Larsen AT, Ogbonna AG, Polentarutti B, Barker RA, Phillips AR, Rmaileh AR. Oral bioavailability of cinnarizine in dogs: relation to SNEDDS particle size, drug solubility and in vitro precipitation. Eur J Pharm Sci. 2013;48:339–50.
CAS
PubMed
Google Scholar
Larsen AT, Ogbonna AB, Rmaileh AR, Østergaard A, Müllertz J. SNEDDS containing poorly water soluble cinnarizine; development and in vitro characterization of dispersion, digestion and solubilization. Pharmaceutics. 2012;4:641–65.
PubMed Central
CAS
PubMed
Google Scholar
Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.
PubMed
Google Scholar
Khan AW, Kotta S, Ansari SH. Potentials and challenges in selfnanoemulsifying drug delivery systems. Expert Opin Drug Deliv. 2012;9(10):1305–17.
CAS
PubMed
Google Scholar
Zhao Y, Wang C, Chow AHL, Ren K, Gong T, Zhang Z, Zheng Y. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of zedoary essential oil: formulation and bioavailability studies. Int J Pharm. 2010;383:170–7.
CAS
PubMed
Google Scholar
Dabhi MR, Limbani MD, Sheth NR. Preparation and in vivo evaluation of self-nanoemulsifying drug delivery system (SNEDDS) containing ezetimibe. Curr Nanosci. 2011;7(4):616.
CAS
Google Scholar
Bandyopadhyay S, Katare OP, Singh B. Development of optimized supersaturable self-nanoemulsifying systems of ezetimibe: effect of polymersand efflux transporters. Expert Opin Drug Deliv. 2014;11(4):479–92.
CAS
PubMed
Google Scholar
Tran T, Guo Y, Song D, Bruno RS, Lu XI. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014;103:840–52.
CAS
PubMed
Google Scholar
Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12.
CAS
PubMed
Google Scholar
Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.
CAS
PubMed
Google Scholar
Wang Z, Sun J, Wang Y, Liu X, Liu Y, Fu Q, et al. Solid self-emulsifying nitrendipine pellets: preparation and in vitro/in vivo evaluation. Int J Pharm. 2010;383(1–2):1–6.
CAS
PubMed
Google Scholar
Abbaspour M, Jalayer N, Makhmalzadeh BS. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization. Adv Pharm Bull. 2014;4(2):113–9.
PubMed Central
PubMed
Google Scholar
Beg S, Jena SS, Patra CN, Rizwan M, Swain S, Sruti J, et al. Development of solid self nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloid Surf B. 2013;101:414–23.
CAS
Google Scholar
Piao ZZ, Choe JS, Oh KT, Rhee YS, Lee BJ. Formulation and in vivo human bioavailability of dissolving tablets containing a self-nanoemulsifying itraconazole solid dispersion without precipitation in simulated gastrointestinal fluid. Eur J Pharm Sci. 2014;51:67–74.
CAS
PubMed
Google Scholar
Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: case example nelfinavir. Eur J Pharm Biopharm. 2011;79:349–56.
CAS
PubMed
Google Scholar
Attama AA. SLN, NLC, LDC: state of the art in drug and active delivery. Recent Pat Drug Deliv Formul. 2011;5:178–87.
CAS
PubMed
Google Scholar
Muchow M, Maincent P, Müller RH, Keck CM. Production and characterization of testosterone undecanoate-loaded NLC for oral bioavailability enhancement. Drug Dev Ind Pharm. 2011;37(1):8–14.
CAS
PubMed
Google Scholar
Varshosaz J, Minayian M, Moazen E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J Liposome Res. 2010;20(2):115–23.
CAS
PubMed
Google Scholar
Hu LD, Xing Q, Meng J, Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2010;11(2):582–7.
PubMed Central
PubMed
Google Scholar
Varshosaz J, Tabbakhian M, Mohammadi MY. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res. 2010;20(4):286–96.
CAS
PubMed
Google Scholar
Zhuang CY, Li N, Wang M, Zhang XN, Peng JJ, Pan WS. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm; 394:179–85.
Ravi PR, Vats R, Dalal V, Murthy AN. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J Pharm Pharmacol. 2014;66(7):912–26.
CAS
PubMed
Google Scholar
Zhang Z, Bu H, Gao Z, Huang Y, Gao F, Li Y. The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm. 2010;394(1–2):147–53.
CAS
PubMed
Google Scholar
Beloqui A, Solinís MA, Rieux A, Préat V, Gascón AR. Dextran protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm. 2014;468:105–11.
CAS
PubMed
Google Scholar
Thulasi Ram D, Debnath S, Niranjan Babu M, Chakradhar Nath T, Thejeswi B. A review on solid lipid nanoparticles. Res J Pharm. Technol. 2012;5(11):1359–68.
Muchow M, Maincent P, Maincent P. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm. 2008;34:1394–405.
CAS
PubMed
Google Scholar
Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.
CAS
PubMed
Google Scholar
Pathak P, Keshri L, Shah M. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics. Crit Rev Ther Drug. 2011;28(4):357–93.
CAS
Google Scholar
Tarr BD, Yalkowsky SH. Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size. Pharm Res. 1989;6(1):40–3.
CAS
PubMed
Google Scholar
Kreuter J. Peroral administration of nanoparticles. Adv Drug Deliv Rev. 1991;7:71–86.
CAS
Google Scholar
Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release. 2005;107:215–28.
CAS
PubMed
Google Scholar
Fricker G, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27:1469–86.
CAS
PubMed
Google Scholar
Olbrich C, Gebner A, Kayser O, Muller RH. Lipid-drug conjugate (LDC) nanoparticles as a novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target. 2002;10:387–96.
CAS
PubMed
Google Scholar
Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.
CAS
PubMed
Google Scholar
Xie S, Pan B, Wang M, Zhu L, Wang F, Dong Z, et al. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomed (Lond). 2010;5(5):693–701.
CAS
Google Scholar
Luo CF, Yuan M, Chen MS, Liu SM, Zhu L, Huang BY, et al. Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int J Pharm. 2011;410:138–44.
CAS
PubMed
Google Scholar
Alex AMR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1–2):11–8.
Google Scholar
Montenegro L, Campisi A, Sarpietro MG, Carbone C, Acquaviva R, Raciti G, et al. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev Ind Pharm. 2011;37(6):737–46.
CAS
PubMed
Google Scholar
Zhang X, Qiao H, Zhang T, Shi Y, Ni J. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier. Adv Powder Technol. 2014;25(3):1060–8.
CAS
Google Scholar
Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part I oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88(1):160–8.
CAS
PubMed
Google Scholar
Muchow M, Maincent P, Müller RH, Keck CM. Testosterone undecanoate—increase of oral bioavailability by nanostructured lipid carriers (NLC). J Pharm Technol Drug Res. 2010. doi:10.7243/2050-120X-2-4.
Google Scholar
Shangguan M, Lu Y, Qi J, Han J, Tian Z, Xie Y, et al. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J Biomater Appl. 2014;28(6):887–96.
PubMed
Google Scholar
Sun M, Wang S, Nie S, Zhang J. Enhanced oral bioavailability of quercetin by nanostructured lipid carriers. FASEB J. 2014;28(1) (supplement 1044.24).
Liu L, Tang Y, Gao C, Li Y, Chen S, Xiong T, et al. Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloid Surf B. 2014;115:125–31.
CAS
Google Scholar
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6(3):139–50.
PubMed Central
PubMed
Google Scholar
Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci. 2008;97(1):123–43.
CAS
PubMed
Google Scholar
Menjoge AR, Rinderknecht AL, Navath RS, Faridnia M, Kim CJ, Romero RJ. Controlled Release. 2011;149:21.
Google Scholar
Kaminskas LM, McLeod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M. A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomed Nanotechnol Biol Med. 2012;8:103–11.
CAS
Google Scholar
Sadekar S, H. Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral. Adv Drug Deliv Rev. 2014;64:571–88.
Patel J, Garala K, Dharamsi A. Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int J Pharm Investig. 2011;1(3):135–8.
PubMed Central
CAS
PubMed
Google Scholar
Patel RM, Patel HN, Gajjar DG, Patel PM. Enhanced solubility of non-steroidal anti-inflammatory drugs by hydroxyl terminated S-triazine based dendrimers. Asian J Pharm Clin Res. 2014;7:156–61.
CAS
Google Scholar
Teow HM, Zhou Z, Najlah M, Yusof SR, Abbott NJ, D’Emanuele A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int J Pharm. 2012. doi:10.1016/j.ijpharm.2012.10.024.
PubMed
Google Scholar
Abufazali R. Carbon nanotubes: a promising approach for drug delivery. Iranian J Pharm Res. 2010;9(1):1–3.
Google Scholar
Sui L, Yang T, Gao P, Ai M, Pingting Wang PA, Zhenzhen WuZ, et al. Incorporation of cisplatin into PEG-wrapped ultrapurified large-inner- diameter MWCNTs for enhanced loading efficiency and release profile. Int J Pharm. 2014;471:157–65.
CAS
PubMed
Google Scholar
Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ. Characterization and in vitro sustained release of silibinin from pH responsive carbon nanotube-based drug delivery system. J Nanomater. 2014. doi:10.1155/2014/439873.
Google Scholar
Hilder TA, Hill JM. Modeling the loading and unloading of drugs into nanotubes. Small. 2009. doi:10.1002/smll.200800321.
Google Scholar
Giorgia P. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option. Pharm Res. 2009;26(4):746–69.
Google Scholar
Prajapati VK, Awasthi K, Gautam S, et al. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother. 2010;66:874–9.
Google Scholar
Prajapati VK, Awasthi K, Yadav TP, Srivastava ON, Sundar S. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis. 2012;205(2):333–6.
PubMed Central
CAS
PubMed
Google Scholar
Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomed Nanotechnol Biol Med. 2008;4:173–82.
CAS
Google Scholar
Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med. 2008;4:13–200.
Google Scholar
Ye S, Jiang Y, Zhang H. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One. 2013;8.
Ito Y, Venkatesan N, Hirako N, Sugioka N, Takada K. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int J Pharm. 2008;337:357–60.
Google Scholar
Lee Y, Geckeler KE. Carbon nanotubes in the biological interphase: the relevance of noncovalence. Adv Mater. 2010;22(36):4076–83.
CAS
PubMed
Google Scholar
Fisher C, Rider AE, Han ZJ, Kumar S, Levchenko I, Ostrikov K. Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J Nanomater. 2012. doi:10.1155/2012/315185.
Google Scholar
Kostarelos K, Bianco A, Lacerda L, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012;33(11):3334–43.
PubMed
Google Scholar
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–37.
CAS
PubMed
Google Scholar
Jones MC, Leroux JC. Polymeric micelles: a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.
CAS
PubMed
Google Scholar
Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.
CAS
Google Scholar
Riess G. Micellization of block copolymers. Prog Polym Sci. 2003;28:1107–70.
CAS
Google Scholar
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013. doi:10.1155/2013/340315.
Google Scholar
Kabanov AV, Batrakova EV, Alakhov EY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2–3):189–212.
CAS
PubMed
Google Scholar
Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61(10):768–84.
CAS
PubMed
Google Scholar
Meier MAR, Aerts SNH, Staal BBP, Rasa M, Schubert US. PEO-b-PCL block copolymers: synthesis, detailed characterization, and selected micellar drug encapsulation behavior. Macromol Rapid Commun. 2005;26(24):1918–24.
Ruan G, Feng SS. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials. 2003;24(27):5037–44.
CAS
PubMed
Google Scholar
Taek GK, Lee H, Jang Y, Tae GP. Controlled release of paclitaxel from heparinized metal stent fabricated by layer-by-layer assembly of polylysine and hyaluronic acid-g-poly(lactic-co-glycolic acid) micelles encapsulating paclitaxel. Biomacromolecules. 2009;10:1532–9.
Google Scholar
Lee H, Ahn CH, Park TG. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci. 2009;9:336–42.
CAS
PubMed
Google Scholar
Benahmed A, Ranger M, Leroux J. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(d, l lactide). Pharm Res. 2001;18:323–38.
CAS
PubMed
Google Scholar
Inoue T, Chen G, Nakamae K, Hoffman AS. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drags. J Control Release. 1998;51:221–9.
CAS
PubMed
Google Scholar
Attia ABE, Ong ZY, Hedrick JL, Phin Peng Lee PP, Pui Lai Rachel EE. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci. 2011;16:182–94.
Google Scholar
Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92:1343–55.
CAS
PubMed
Google Scholar
Rieux A, Fievez V, Garinot M, Schneider YM, Préat Y. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.
PubMed
Google Scholar
Pierri E, Avgoustakis K. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J Biomed Mater Res A. 2005;75:639–47.
CAS
PubMed
Google Scholar
Kim MS, Lee DS. In vitro degradability and stability of hydrophobically modified pH-sensitive micelles using MPEG-grafted poly(B-amino ester) for efficient encapsulation of paclitaxel. J Appl Polym Sci. doi:10.1002/app.32685.
Lee I, Park M, Kim Y, Hwang O, Khang G, Lee D. Ketal containing amphiphilic block copolymer micelles as pH-sensitive drug carriers. Int J Pharm. 2013;448(1):259–66.
CAS
PubMed
Google Scholar
Wang F, Zhang D, Zhang Q, Chen Y, Zheng D, Hao L, et al. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel–polymer micelles to overcome multi-drug resistance. Biomaterials. 2011;32(35):9444–56.
CAS
PubMed
Google Scholar
Heffeter P, Riabtseva A, Senkiv Y, Kowol CR, Körner W, Jungwith U. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019. J Biomed Nanotechnol. 2014;10(5):877–84.
CAS
PubMed
Google Scholar
Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM. Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res. 2013;19(2):287–96.
CAS
PubMed
Google Scholar
Rodríguez GRR, Alonso MK, Torres D. Poly-l-asparagine nanocapsules as anticancer drug delivery vehicles. Eur J Pharm Biopharm. 2013;85(3)part A:481–87.
Kanwar JR, Mahidhara G, Kanwar RK. Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine (Lond). 2012;7(10):1521–50.
CAS
PubMed
Google Scholar
Yao HJ, Ju RJ, Wang XX, Zhang Y, Li RJ, Yu Y, et al. The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery. Biomaterials. 2011;32(12):3285–302.
CAS
PubMed
Google Scholar
Sagnella SM, Gong X, Moghaddam MJ, Conn CE, Kimpton K, Waddington LJ, et al. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents. Nanoscale. 2011;3(3):919–24.
CAS
PubMed
Google Scholar
Liu X, Huang H, Wang J, Wang C, Wang M, Zhang B, et al. Dendrimers-delivered short hairpin RNA targeting hTERT inhibits oral cancer cell growth in vitro and in vivo. Biochem Pharmacol. 2011;82(1):17–23.
CAS
PubMed
Google Scholar
Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release. 2010;148(3):359–67.
CAS
PubMed
Google Scholar
Yassin AEB, Anwer MK, Mowafy HA, Bagory IME, Bayomi MA, Alsarra IA. Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci. 2010;7(6):398–408.
PubMed Central
CAS
PubMed
Google Scholar
Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev. 2013;65:880–90.
CAS
PubMed
Google Scholar
Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A. 2004;67:87–107.
CAS
PubMed
Google Scholar
Han SG, Andrews R, Gairola CG. Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhalation Toxicol. 2010;22(4):340–7.
CAS
Google Scholar
Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269(2–3):136–47.
CAS
PubMed
Google Scholar
Wolfarth MG, McKinney W, Chen BT, Castranova V, Porter DW. Acute pulmonary responses to MWCNT inhalation. Toxicologist. 2011;120:A53.
Google Scholar
Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multiwall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology. 2010;272(1–3):11–6.
CAS
PubMed
Google Scholar
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–34.
CAS
PubMed
Google Scholar
Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AF, et al. Unusual inflammatoryand fibrogenic pulmonary, response to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289:L698–708.
CAS
PubMed
Google Scholar
Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–25.
CAS
PubMed
Google Scholar
Liao L, Zhang M, Liu H, Gong T, Sun X. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(d, l-lactic-co- glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats. Nanotechnology. 2014;25(24):245.
Google Scholar
Zhao B, Wang XQ, Wang XY, Wu HN, Zhang Q. Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Particle Fibre Toxicol. 2013;10(1):47.
Google Scholar
Thiagarajan G, Greish K, Ghandehari H. Charge affects the oral toxicity of poly(amido amine) dendrimers. Eur J Pharm Biopharm. 2013;84(2):330–4.
CAS
PubMed
Google Scholar
Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9:1025–37.
CAS
Google Scholar
Nagender RP, Pena-Mendez EM, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed. 2009;7:75–91.
Google Scholar
Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5(5):760–75.
CAS
PubMed
Google Scholar
Gu CH, Rao D, Gandhi RB, Hilden J, Raghavan K. Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J Pharm Sci. 2005;94(1):199–208.
CAS
PubMed
Google Scholar
Gupta V, Doshi N, Mitragotri S. Permeation of insulin, calcitonin and exenatide across Caco-2 monolayers: measurement using a rapid, 3-day system. PLOS One. 2013;8(2):1–19.
CAS
Google Scholar
Wu YF, Liu H, Ni JM. Advances in parallel artificial membrane permeability assay and its applications. Yao Xue Xue Bao. 2011;46(8):890–5.
PubMed
Google Scholar
Nielsen PE, Avdeef A. PAMPA—a drug absorption in vitro model 8. Apparent filter porosity and the unstirred water layer. Eur J Pharm Sci. 2004;22:33–41.
CAS
PubMed
Google Scholar
Kansy M, Avdeef A, Fischer H. Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists. DDT Technol. 2004;1:349–55.
Tavelin S, Taipalensuu J, Hallbook F, Vellonen KS, Moore V, Artursson P. An improved cell culture model based on 2/4/A1 cell monolayers for studies of intestinal drug transport: characterization of transport routes. Pharm Res. 2003;20:373–81.
CAS
PubMed
Google Scholar
Tavelin S, Taipalensuu J, Soderberg L, Morrison R, Chong S, Artursson P. Prediction of the oral absorption of low-permeability drugs using small intestine-like 2/4/A1 cell monolayers. Pharm Res. 2003;20:397–405.
CAS
PubMed
Google Scholar
Bryan WJ. Enhancement & controlled release as a synergistic tools. Drug Deliv Technol. 2002;2(6).
Beg S, Swain S, Rizwan M. Irfanuddin, Malini DS. Bioavailability enhancement strategies: basics, formulation approaches and regulatory considerations. Curr Drug Deliv. 2011;8(6):1–12.
Google Scholar
Lappin G, Garner R. The use of accelerator mass spectrometry to obtain early human ADME/PK data. Expert Opin Drug Metabol. Toxicol. 2005;1(1):23–31.
CAS
Google Scholar
Bonnafous D, Cav G, Dembri A, Binay SL, Ponchel G, GPE. Oral formulations of chemotherapeutic agents. 2010;WO 2010015688 A1.
Sung HW, Kiran Sonaje K, Tu H. Pharmaceutical composition of nanoparticles for protein drug delivery. 2012;US20120003306 A1.
Schobel AM, Myers, Garry ML, Joseph KK, Thomas R, Jan M, Justin NW. Nanoparticle film delivery systems. 2011;WO/2011/156711.
Park TG, Kim HR, Kim IK. LDL-like cationic nanoparticles for delivering nucleic acid gene, method for preparing thereof and method for delivering nucleic acid gene using the same. 2010;US 20100297242A1.
Radovic-Moreno AF, Zhang L, Langer RS, Farokhzad OC. Polymer-encapsulated reverse micelles. 2010;US20100196482 A1.
Rios MDL, Oh KL. Self-assembling nanoparticle drug delivery system. 2011;US7964196 B2.
Bronich TK, Kabanov AV. Synthesizing an amphiphilic block polymer micelle having ionically-charged polymeric segments and nonionically-charged polymeric segments; neutralizing under conditions that allow for self-assembly of polymer micelles; crosslinking; removing the moieties of opposite charge; drug delivery; stability. 2013;US 8415400 B2.
Baker JR, Zhang Y. Hydroxyl-terminated dendrimers. 2011;WO 2011053618A2.
Matuschek M, Ernst A, Köpsel C, Jager MB, Kleber A, Krohn M, et al. Use of water-dispersible carotenoid nanoparticles as taste modulators, taste modulators containing water-dispersible carotenoid nanoparticles, and method for test modulation. 2010;US20100028444 A1.
Porter V, Morgan A, Prencipe M. Oral care composition. 2013;US20130017240.
Sahoo SK, Mohanty C. Novel water soluble curcumin loaded nanoparticulate system for cancer therapy. 2011;WO Patent 2011101859 A1.