Population Pharmacokinetic Model of THC Integrates Oral, Intravenous, and Pulmonary Dosing and Characterizes Short- and Long-term Pharmacokinetics

Abstract

Δ9-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ashton CH. Pharmacology and effects of cannabis: a brief review. Br J Psychiatry. 2001;178:101–6.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hazekamp A, Grotenhermen F. Review on clinical studies with cannabis and cannabinoids 2005–2009. Cannabinoids. 2010;5:1–21.

    Google Scholar 

  3. 3.

    Kalant H. Medicinal use of cannabis: history and current status. Pain Res Manag. 2001;6:80–91.

    CAS  PubMed  Google Scholar 

  4. 4.

    Devane WA, Dysarz FA III, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.

    CAS  PubMed  Google Scholar 

  5. 5.

    Glass M, Northup JK. Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol Pharmacol. 1999;56:1362–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Klumpers LE, Roy C, Ferron G, Turpault S, Poitiers F, Pinquier JL, et al. Surinabant, a selective cannabinoid receptor type 1 antagonist, inhibits delta 9-tetrahydrocannabinol-induced central nervous system and heart rate effects in humans. Br J Clin Pharmacol. 2013;76:65–77.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Grotenhermen F. Clinical pharmacokinetics of cannabinoids. J Cannabis Ther. 2003;3:3–51.

  8. 8.

    Lindgren JE, Ohlsson A, Agurell S, Hollister L, Gillespie H. Clinical effects and plasma levels of delta 9-tetrahydrocannabinol (delta 9-THC) in heavy and light users of cannabis. Psychopharmacology (Berl). 1981;74:208–12.

    CAS  Article  Google Scholar 

  9. 9.

    Ohlsson A, Lindgren JE, Wahlen A, Agurell S, Hollister LE, Gillespie HK. Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther. 1980;28:409–16.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Watanabe K, Matsunaga T, Yamamoto I, Funae Y, Yoshimura H. Involvement of CYP2C in the metabolism of cannabinoids by human hepatic microsomes from an old woman. Biol Pharm Bull. 1995;18:1138–41.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80:1415–9.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Perez-Reyes M, Timmons MC, Lipton MA, Davis KH, Wall ME. Intravenous injection in man of 9-tetrahydrocannabinol and 11-OH-9-tetrahydrocannabinol. Science. 1972;177:633–5.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Garrett ER, Hunt CA. Physiochemical properties, solubility, and protein binding of delta 9-tetrahydrocannabinol. J Pharm Sci. 1974;63:1056–64.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hunt CA, Jones RT. Tolerance and disposition of tetrahydrocannabinol in man. J Pharmacol Exp Ther. 1980;215:35–44.

    CAS  PubMed  Google Scholar 

  15. 15.

    Ho BT, Fritchie GE, Kralik PM, Englert LF, McIsaac WM, Idanpaan-Heikkila J. Distribution of tritiated-1 delta 9 tetrahydrocannabinol in rat tissues after inhalation. J Pharm Pharmacol. 1970;22:538–9.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Johansson E, Noren K, Sjovall J, Halldin MM. Determination of delta 1-tetrahydrocannabinol in human fat biopsies from marihuana users by gas chromatography-mass spectrometry. Biomed Chromatogr. 1989;3:35–8.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Ohlsson A, Lindgren JE, Wahlen A, Agurell S, Hollister LE, Gillespie HK. Single dose kinetics of deuterium labelled delta 1-tetrahydrocannabinol in heavy and light cannabis users. Biomed Mass Spectrom. 1982;9:6–10.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Leuschner JT, Harvey DJ, Bullingham RE, Paton WD. Pharmacokinetics of delta 9-tetrahydrocannabinol in rabbits following single or multiple intravenous doses. Drug Metab Dispos. 1986;14:230–8.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lemberger L, Tamarkin NR, Axelrod J, Kopin IJ. Delta-9-tetrahydrocannabinol: metabolism and disposition in long-term marihuana smokers. Science. 1971;173:72–4.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Wall ME, Sadler BM, Brine D, Taylor H, Perez-Reyes M. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin Pharmacol Ther. 1983;34:352–63.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Chiang CW, Barnett G. Marijuana effect and delta-9-tetrahydrocannabinol plasma level. Clin Pharmacol Ther. 1984;36:234–8.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Barnett G, Chiang CW, Perez-Reyes M, Owens SM. Kinetic study of smoking marijuana. J Pharmacokinet Biopharm. 1982;10:495–506.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Cocchetto DM, Owens SM, Perez-Reyes M, DiGuiseppi S, Miller LL. Relationship between plasma delta-9-tetrahydrocannabinol concentration and pharmacologic effects in man. Psychopharmacology (Berl). 1981;75:158–64.

    CAS  Article  Google Scholar 

  24. 24.

    Harder S, Rietbrock S. Concentration-effect relationship of delta-9-tetrahydrocannabiol and prediction of psychotropic effects after smoking marijuana. Int J Clin Pharmacol Ther. 1997;35:155–9.

    CAS  PubMed  Google Scholar 

  25. 25.

    Hunault CC, van Eijkeren JC, Mensinga TT, de VI, Leenders ME, Meulenbelt J. Disposition of smoked cannabis with high delta(9)-tetrahydrocannabinol content: a kinetic model. Toxicol Appl Pharmacol. 2010;246:148–53.

  26. 26.

    Strougo A, Zuurman L, Roy C, Pinquier JL, van Gerven JM, Cohen AF, et al. Modelling of the concentration-effect relationship of THC on central nervous system parameters and heart rate: insight into its mechanisms of action and a tool for clinical research and development of cannabinoids. J Psychopharmacol. 2008;22:717–26.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Klumpers LE, Beumer TL, van Hasselt JG, Lipplaa A, Karger LB, Kleinloog HD, et al. Novel delta(9)-tetrahydrocannabinol formulation Namisol(R) has beneficial pharmacokinetics and promising pharmacodynamic effects. Br J Clin Pharmacol. 2011;74:42–53.

  28. 28.

    Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SA, et al. Manipulating brain connectivity with delta(9)-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage. 2012;63:1701–11.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Kleinloog D, Liem-Moolenaar M, Jacobs G, Klaassen E, de Kam M, Hijman R, et al. Does olanzapine inhibit the psychomimetic effects of delta(9)-tetrahydrocannabinol? J Psychopharmacol. 2012;26:1307–16.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Morrison PD, Zois V, McKeown DA, Lee TD, Holt DW, Powell JF, et al. The acute effects of synthetic intravenous delta 9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med. 2009;39:1607–16.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Barkus E, Morrison PD, Vuletic D, Dickson JC, Ell PJ, Pilowsky LS, et al. Does intravenous delta 9-tetrahydrocannabinol increase dopamine release? A SPET study. J Psychopharmacol. 2011;25:1462–8.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Morrison PD, Nottage J, Stone JM, Bhattacharyya S, Tunstall N, Brenneisen R, et al. Disruption of frontal theta coherence by delta 9-tetrahydrocannabinol is associated with positive psychotic symptoms. Neuropsychopharmacology. 2011;36:827–36.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 2010;35:764–74.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. 34.

    Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5:445–79.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Promasys 6.1 version. Leiden: Promasys BV; 2011.

  36. 36.

    Beal SL, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM User’s Guides (1989–2009). SSLBBA&BRJ. 2009.

  37. 37.

    R Development Core Team. R: a language and environment for statistical computing. RFfSCVA. 2011.

  38. 38.

    Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.

    PubMed  Article  Google Scholar 

  39. 39.

    Litterst CL, Flora KP, Cradock JC. Bioavailability of delta-9-tetrahydrocannabinol-derived radioactivity following intramuscular administration of delta-9-11-C-14-tetrahydrocannabinol to rabbits. Res Commun Subst Abuse. 1982;3:453–65.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Jasper Stevens for his review of the manuscript and advice during manuscript development.

Conflict of interest

The authors would like to declare the following conflicts of interest; Study CHDR0828 was sponsored by ECHO Pharmaceuticals. TLB is an employee of ECHO Pharmaceuticals; Support for Dr. Paul Morrison was from the MRC (UK).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jules A. A. C. Heuberger.

Appendix

Appendix

figurea
$$ \frac{{{\text{d}}A_{1} }}{{{\text{d}}t}} = - K_{a \cdot } A_{1} + R_{\text{oral}} (t) \cdot I_{\text{oral}} $$
$$ \frac{{{\text{d}}A_{2} }}{{{\text{d}}t}} = K_{a\cdot} A_{1} + R_{IV} \left( t \right) \cdot I_{IV} + R_{\text{inh}} \left( t \right) \cdot I_{\text{inh}} - k_{23} \cdot A_{2} - k_{24} \cdot A_{2} + k_{32} \cdot A_{3} + k_{42} \cdot A_{4} - k_{20} \cdot A_{2} $$
$$ \frac{{{\text{d}}A_{3} }}{{{\text{d}}t}} = k_{23} \cdot A_{2} - k_{32} \cdot A_{3} $$
$$ \frac{{{\text{d}}A_{4} }}{{{\text{d}}t}} = k_{24} \cdot A_{2} - k_{42} \cdot A_{4} $$

and

$$ C_{\text{plasma}} = A_{2} /V_{2} $$

where A i is the amount in compartment i, k ij are the rate constants for the exchange rate between compartments i and j, R oral(t) is the (instantaneous) administration rate in the dose depot with bioavailability F 1, R IV(t) is the infusion rate (100 % bioavailability), R inf(t) the (instantaneous) inhalation rate with bioavailality F 2, K a is the absorption rate constant, I inh, I inf, and I oral are indicators for the administration route (true or false), C plasma is the plasma concentration, and V 2 is the central distribution volume.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heuberger, J.A.A.C., Guan, Z., Oyetayo, OO. et al. Population Pharmacokinetic Model of THC Integrates Oral, Intravenous, and Pulmonary Dosing and Characterizes Short- and Long-term Pharmacokinetics. Clin Pharmacokinet 54, 209–219 (2015). https://doi.org/10.1007/s40262-014-0195-5

Download citation

Keywords

  • Terminal Phase
  • Administration Route
  • Cannabis User
  • Visual Predictive Check
  • Nose Clip