Skip to main content
Log in

Integrated Population Pharmacokinetic/Viral Dynamic Modelling of Lopinavir/Ritonavir in HIV-1 Treatment-Naïve Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Lopinavir (LPV)/ritonavir (RTV) co-formulation (LPV/RTV) is a widely used protease inhibitor (PI)-based regimen to treat HIV-infection. As with all PIs, the trough concentration (C trough) is a primary determinant of response, but the optimum exposure remains poorly defined. The primary objective was to develop an integrated LPV population pharmacokinetic model to investigate the influence of α-1-acid glycoprotein and link total and free LPV exposure to pharmacodynamic changes in HIV-1 RNA and assess viral dynamic and drug efficacy parameters.

Methods

Data from 35 treatment-naïve HIV-infected patients initiating therapy with LPV/RTV 400/100 mg orally twice daily across two studies were used for model development and simulations using ADAPT. Total LPV (LPVt) and RTV concentrations were measured by high-performance liquid chromatography with ultraviolet (UV) detection. Free LPV (LPVf) concentrations were measured using equilibrium dialysis and mass spectrometry.

Results

The LPVt typical value of clearance (\( {\text{CL}}_{{{\text{LPV}}_{\text{t}} }} /F \)) was 4.73 L/h and the distribution volume (\( V_{{{\text{LPV}}_{\text{t}} }} /F \)) was 55.7 L. The clearance (\( {\text{CL}}_{{{\text{LPV}}_{\text{f}} }} /F \)) and distribution volume (V f/F) for LPVf were 596 L/h and 6,370 L, respectively. The virion clearance rate was 0.0350 h−1. The simulated \( {\text{LPV}}_{{{\text{LPV}}_{\text{t}} }} \) C trough values at 90 % (EC90) and 95 % (EC95) of the maximum response were 316 and 726 ng/mL, respectively.

Conclusions

The pharmacokinetic–pharmacodynamic model provides a useful tool to quantitatively describe the relationship between LPV/RTV exposure and viral response. This comprehensive modelling and simulation approach could be used as a surrogate assessment of antiretroviral (ARV) activity where adequate early-phase dose-ranging studies are lacking in order to define target trough concentrations and possibly refine dosing recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. AIDSinfo. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services; 2013. http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf (Accessed 6 July 2013).

  2. Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci. 1982;389:39–48.

    Article  PubMed  CAS  Google Scholar 

  3. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  PubMed  CAS  Google Scholar 

  4. Belpaire FM, Bogaert MG. Pharmacokinetic and pharmacodynamic consequences of altered binding of drugs to alpha 1-acid glycoprotein. Prog Clin Biol Res. 1989;300:337–50.

    PubMed  CAS  Google Scholar 

  5. Crommentuyn KM, Kappelhoff BS, Mulder JW, et al. Population pharmacokinetics of lopinavir in combination with ritonavir in HIV-1-infected patients. Br J Clin Pharmacol. 2005;60(4):378–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. FDA. Prescribing information for KALETRA. Reference ID: 2909830. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021251s039,021906s032lbl.pdf (Accessed 26 March 2013).

  7. Sham HL, Kempf DJ, Molla A, et al. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother. 1998;42(12):3218–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Ofotokun I, Chuck SK, Binongo JN, et al. Lopinavir/ritonavir pharmacokinetic profile: impact of sex and other covariates following a change from twice-daily to once-daily therapy. J Clin Pharmacol. 2007;47(8):970–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Ofotokun I, Lennox JL, Eaton ME, et al. Immune activation mediated change in alpha-1-acid glycoprotein: impact on total and free lopinavir plasma exposure. J Clin Pharmacol. 2011;51(11):1539–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Schumitzky A. EM algorithms and two stage methods in pharmacokinetic population analysis. In: D’Argenio DZ, editor. Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. Vol. 2. New York: Plenum Press; 1995. p. 60.

  11. Walker S. An EM algorithm for nonlinear random effects models. Biometrics. 1996;52(3):934–44.

    Article  Google Scholar 

  12. D’Argenio D, Schumitzky A, Wang X. ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009.

    Google Scholar 

  13. Bergstrand M, Hooker AC, Wallin JE, et al. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85–94.

    Article  PubMed  Google Scholar 

  15. Jonsson EN, Karlsson MO. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang C, Denti P, Decloedt E, et al. Model-based approach to dose optimization of lopinavir/ritonavir when co-administered with rifampicin. Br J Clin Pharmacol. 2012;73(5):758–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Baker SD, Li J, ten Tije AJ, et al. Relationship of systemic exposure to unbound docetaxel and neutropenia. Clin Pharmacol Ther. 2005;77(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  18. Wu H, Huang Y, Acosta EP, et al. Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency, pharmacokinetics, adherence, and drug resistance. J Acquir Immune Defic Syndr. 2005;39(3):272–83.

    Article  PubMed  CAS  Google Scholar 

  19. Bonhoeffer S, May RM, Shaw GM, et al. Virus dynamics and drug therapy. Proc Natl Acad Sci USA. 1997;94(13):6971–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Fang J, Jadhav PR. From in vitro EC50 to in vivo dose-response for antiretrovirals using an HIV disease model. Part I: a framework. J Pharmacokinet Pharmacodyn. 2012;39(4):357–68.

    Article  PubMed  CAS  Google Scholar 

  21. Weller S, Radomski KM, Lou Y, et al. Population pharmacokinetics and pharmacodynamic modeling of abacavir (1592U89) from a dose-ranging, double-blind, randomized monotherapy trial with human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother. 2000;44(8):2052–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Gieschke R, Fotteler B, Buss N, et al. Relationships between exposure to saquinavir monotherapy and antiviral response in HIV-positive patients. Clin Pharmacokinet. 1999;37(1):75–86.

    Article  PubMed  CAS  Google Scholar 

  23. Gulati A, Boudinot FD, Gerk PM. Binding of lopinavir to human alpha1-acid glycoprotein and serum albumin. Drug Metab Dispos. 2009;37(8):1572–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Funk GA, Fischer M, Joos B, et al. Quantification of in vivo replicative capacity of HIV-1 in different compartments of infected cells. J Acquir Immune Defic Syndr. 2001;26(5):397–404.

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi M, Kudaka Y, Okumura N, et al. Pharmacokinetic parameters of lopinavir determined by moment analysis in Japanese HIV type 1-infected patients. AIDS Res Hum Retroviruses. 2008;24(1):114–5.

    Article  PubMed  CAS  Google Scholar 

  26. Dailly E, Reliquet V, Raffi F, et al. A population approach to study the influence of nevirapine administration on lopinavir pharmacokinetics in HIV-1 infected patients. Eur J Clin Pharmacol. 2005;61(2):153–6.

    Article  PubMed  CAS  Google Scholar 

  27. Bouillon-Pichault M, Jullien V, Azria E, et al. Population analysis of the pregnancy-related modifications in lopinavir pharmacokinetics and their possible consequences for dose adjustment. J Antimicrob Chemother. 2009;63(6):1223–32.

    Article  PubMed  CAS  Google Scholar 

  28. Ng J, Chiu YL, Awni W, et al. Pharmacokinetics and safety of the lopinavir/ritonavir tablet 500/125 mg twice daily coadministered with efavirenz in healthy adult participants. J Clin Pharmacol. 2012;52(8):1248–54.

    Article  PubMed  CAS  Google Scholar 

  29. Overton ET, Tschampa JM, Klebert M, et al. The effect of acid reduction with a proton pump inhibitor on the pharmacokinetics of lopinavir or ritonavir in HIV-infected patients on lopinavir/ritonavir-based therapy. J Clin Pharmacol. 2010;50(9):1050–5.

    Article  PubMed  CAS  Google Scholar 

  30. Boffito M, Hoggard PG, Lindup WE, et al. Lopinavir protein binding in vivo through the 12-hour dosing interval. Ther Drug Monitor. 2004;26(1):35–9.

    Article  CAS  Google Scholar 

  31. Bree F, Houin G, Barre J, et al. Pharmacokinetics of intravenously administered 125I-labelled human alpha 1-acid glycoprotein. Clin Pharmacokinet. 1986;11(4):336–42.

    Article  PubMed  CAS  Google Scholar 

  32. Acosta EP, Limoli KL, Trinh L, et al. Novel method to assess antiretroviral target trough concentrations using in vitro susceptibility data. Antimicrob Agents Chemother. 2012;56(11):5938–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Schipani A, Dickinson L, Boffito M, et al. Simultaneous population pharmacokinetic modelling of atazanavir and ritonavir in HIV-infected adults and assessment of different dose reduction strategies. J Acquir Immune Defic Syndr. 2013;62(1):60–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Lopez Aspiroz E, Santos Buelga D, Cabrera Figueroa S, et al. Population pharmacokinetics of lopinavir/ritonavir (Kaletra) in HIV-infected patients. Ther Drug Monitor. 2011;33(5):573–82.

    Google Scholar 

  35. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373(6510):123–6.

    Article  PubMed  CAS  Google Scholar 

  36. Mohri H, Bonhoeffer S, Monard S, et al. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science. 1998;279(5354):1223–7.

    Article  PubMed  CAS  Google Scholar 

  37. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373(6510):117–22.

    Article  PubMed  CAS  Google Scholar 

  38. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271(5255):1582–6.

    Article  PubMed  CAS  Google Scholar 

  39. Dimitrov DS, Willey RL, Sato H, et al. Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol. 1993;67(4):2182–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Stafford MA, Corey L, Cao Y, et al. Modeling plasma virus concentration during primary HIV infection. J Theor Biol. 2000;203(3):285–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants 1K23 A1073119 (IO), 5K12 RR017643 (IO), 1U01AI103408-01 (IO), P41-EB001978 (DZD), KL2TR000455 (ANS), UL1TR000454 (ANS), Emory University CFAR (NIH P30 A1050409), and the Atlanta Clinical and Translational Science Institute (NIH MO1 RR00039). We would like to acknowledge the individuals that participated in these studies. Without their dedication this work could not have been accomplished.

Conflict of Interest

None of the authors has any conflicts of interest that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ighovwerha Ofotokun.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., D’Argenio, D.Z., Acosta, E.P. et al. Integrated Population Pharmacokinetic/Viral Dynamic Modelling of Lopinavir/Ritonavir in HIV-1 Treatment-Naïve Patients. Clin Pharmacokinet 53, 361–371 (2014). https://doi.org/10.1007/s40262-013-0122-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0122-1

Keywords

Navigation