Skip to main content
Log in

Neutrophil Dynamics in Peritoneal Carcinomatosis Patients Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Oxaliplatin

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Peritoneal carcinomatosis is an abdominal metastatic manifestation of a life-threatening tumour progression requiring standard palliative surgery and/or chemotherapy treatment. The aim of this study was to characterize the immediate neutrophilia response induced by cytoreductive surgery (CRS) and the myelosuppression effect of hyperthermic intraperitoneal oxaliplatin (HIO) in peritoneal carcinomatosis patients.

Methods

Absolute neutrophil counts (ANCs) from 45 patients treated with CRS and HIO diluted in isotonic 4 % icodextrin (cohort A), 21 patients undergoing CRS followed by HIO diluted in isotonic 5 % dextrose (cohort B) and 18 patients treated with CRS without HIO (cohort C) were used to estimate the system-related parameters [baseline ANC (Circ0), mean transit time (MTT) and feedback on proliferation (γ)] and drug-specific (α) parameters of a modified Friberg’s model that accounts for the surgical stress-induced neutrophilia. The plasma oxaliplatin concentrations, C p, were assumed to reduce the proliferation rate of the progenitor cells according to the function α × C p. Model evaluation and simulations were undertaken to evaluate the effect of the dose, treatment duration and carrier solution on the incidence of severe neutropenia.

Results

The typical values [between-subject variability, expressed in coefficient of variation values (%)] of the Circ0, MTT, γ and α were estimated to be 3.58 × 109 cells/L (41.2 %), 144 h (70.9 %), 0.155 and 0.066 L/mg (134.9 %), respectively. Surgical stress induced a maximal 3.37-fold increase in the proliferation rate that was attenuated with a half-life of 10 days, and a maximal 68 % reduction in the MTT that was attenuated with a half-life of 28 days. Age, body surface area, sex, total proteins and carrier solution did not impact the model parameters. The model evaluation evidenced an accurate prediction of the incidence of neutropenia grade ≥2 and/or ≥3. Simulations indicated that (i) the neutropenia was reversible and short-lasting; and (ii) the HIO dose and treatment duration were the main determinants of the severity and duration of neutropenia.

Conclusion

The time course of neutropenia was well characterized by the model that was developed, which simultaneously accounts for the acute-immediate neutrophilia response induced by CRS and the HIO myelosuppressive effect produced in the bone marrow. This model suggests that higher doses than those evaluated to date could be used in peritoneal carcinomatosis patients without substantially increasing the risk of severe neutropenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spiliotis JD. Peritoneal carcinomatosis cytoreductive surgery and HIPEC: a ray of hope for cure. Hepatogastroenterology. 2010;57:1173–7.

    PubMed  Google Scholar 

  2. Elias D, Lefevre JH, Chevalier J, et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27:681–5.

    Article  PubMed  Google Scholar 

  3. Di Giorgio A, Naticchioni E, Biacchi D, et al. Cytoreductive surgery (peritonectomy procedures) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of diffuse peritoneal carcinomatosis from ovarian cancer. Cancer. 2008;113:315–25.

    Article  PubMed  Google Scholar 

  4. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.

    Article  PubMed  Google Scholar 

  5. Yang XJ, Huang CQ, Suo T, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol. 2011;18:1575–81.

    Article  PubMed  Google Scholar 

  6. Cao C, Yan TD, Black D, et al. A systematic review and meta-analysis of cytoreductive surgery with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol. 2009;16:2152–65.

    Article  PubMed  Google Scholar 

  7. Sugarbaker PH. Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. Semin Surg Oncol. 1998;14:254–61.

    Article  PubMed  CAS  Google Scholar 

  8. Elias D, Pocard M, Goere D. HIPEC with oxaliplatin in the treatment of peritoneal carcinomatosis of colorectal origin. Cancer Treat Res. 2007;134:303–18.

    PubMed  CAS  Google Scholar 

  9. Alcindor T, Beauger N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol. 2011;18:18–25.

    Article  PubMed  CAS  Google Scholar 

  10. Elias D, El Otmany A, Bonnay M, et al. Heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13:267–72.

    Article  PubMed  CAS  Google Scholar 

  11. Atallah D, Marsaud V, Radanyi C, et al. Thermal enhancement of oxaliplatin-induced inhibition of cell proliferation and cell cycle progression in human carcinoma cell lines. Int J Hyperthermia. 2004;20:405–19.

    Article  PubMed  CAS  Google Scholar 

  12. Stewart JH, Shen P, Russell G, et al. A phase I trial of oxaliplatin for intraperitoneal hyperthermic chemoperfusion for the treatment of peritoneal surface dissemination from colorectal and appendiceal cancers. Ann Surg Oncol. 2008;15:2137–45.

    Article  PubMed  Google Scholar 

  13. Ferron G, Dattez S, Gladieff L, et al. Pharmacokinetics of heated intraperitoneal oxaliplatin. Cancer Chemother Pharmacol. 2008;62:679–83.

    Article  PubMed  CAS  Google Scholar 

  14. Pérez-Ruixo C, Valenzuela B, Peris JE, et al. Population pharmacokinetics of hyperthermic intraperitoneal oxaliplatin in patients with peritoneal carcinomatosis after cytoreductive surgery. Cancer Chemother Pharmacol. 2013;71:693–704.

    Article  PubMed  Google Scholar 

  15. Elias D, Sideris L. Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin North Am. 2003;12:755–69.

    Article  Google Scholar 

  16. Massari C, Brienza S, Rotarski M, et al. Pharmacokinetics of oxaliplatin in patients with normal versus impaired renal function. Cancer Chemother Pharmacol. 2000;45:157–64.

    Article  PubMed  CAS  Google Scholar 

  17. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.

    Article  PubMed  Google Scholar 

  18. Valenzuela B, Nalda-Molina R, Bretcha-Boix P, et al. Pharmacokinetic and pharmacodynamic analysis of hyperthermic intraperitoneal oxaliplatin-induced neutropenia in subjects with peritoneal carcinomatosis. AAPS J. 2011;13:72–82.

    Article  PubMed  CAS  Google Scholar 

  19. Tabuchi Y, Shinka S, Ishida H. The effects of anesthesia and surgery on count and function of neutrophils. J Anesth. 1989;3:123–31.

    Article  PubMed  CAS  Google Scholar 

  20. Beal SL, Sheiner LB, Boeckman AJ, editors. NONMEM users guides. Ellicott City: ICON Development Solutions; 1989–2006.

  21. González-Sales M, Valenzuela B, Pérez-Ruixo C, et al. Population pharmacokinetic-pharmacodynamic analysis of neutropenia in cancer patients receiving PM00104 (Zalypsis®). Clin Pharmacokinet. 2012;51:751–64.

    Article  PubMed  Google Scholar 

  22. Quartino AL, Friberg LE, Karlsson MO. A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Invest New Drugs. 2012;30:833–45.

    Article  PubMed  CAS  Google Scholar 

  23. Vieira SM, Lemos HP, Grespan R, et al. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. Br J Pharmacol. 2009;158:779–89.

    Article  PubMed  CAS  Google Scholar 

  24. Price TH, Chatta GS, Dale DC. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88:335–40.

    PubMed  CAS  Google Scholar 

  25. Dale DC, Liles WC, Llewellyn C, Price TH. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Am J Hematol. 1998;57:7–15.

    Article  PubMed  CAS  Google Scholar 

  26. Jagels MA, Hugli TE. Mechanisms and mediators of neutrophilic leukocytosis. Immunopharmacology. 1994;28:1–18.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn. 2003;30:387–404.

    Article  PubMed  Google Scholar 

  28. Savic RM, Karlsson MO. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11:558–69.

    Article  PubMed  Google Scholar 

  29. Kloft C, Wallin J, Henningsson A, et al. Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res. 2006;12:5481–90.

    Article  PubMed  CAS  Google Scholar 

  30. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models. I: models for covariate effects. J Pharmacokinet Biopharm. 1992;20:511–28.

    Article  PubMed  CAS  Google Scholar 

  31. Efron B, Tibshirani R. An introduction to the bootstrap. London: Chapman and Hall/CRC Press; 1993.

  32. Brendel K, Comets E, Laffont C, et al. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23:2036–49.

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen TH, Comets E, Mentré F. Extension of NPDE for evaluation of nonlinear mixed effect models in presence of data below the quantification limit with applications to HIV dynamic model. J Pharmacokinet Pharmacodyn. 2012;39:499–518.

    Article  PubMed  Google Scholar 

  34. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13:143–51.

    Article  PubMed  Google Scholar 

  35. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82:17–20.

    Article  PubMed  CAS  Google Scholar 

  36. Dale DC, Fauci AS, Guerry D IV, et al. Comparison of agents producing a neutrophilic leukocytosis in man: hydrocortisone, prednisone, endotoxin, and etiocholanolone. J Clin Invest. 1975;56:808–13.

    Article  PubMed  CAS  Google Scholar 

  37. Joyce RA, Boggs DR. Visualizing the marrow granulocyte reserve. J Lab Clin Med. 1979;93:101–10.

    PubMed  CAS  Google Scholar 

  38. Orr Y, Wilson DP, Taylor JM, et al. A kinetic model of bone marrow neutrophil production that characterizes late phenotypic maturation. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1707–16.

    Article  PubMed  CAS  Google Scholar 

  39. Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res. 2007;24:2187–97.

    Article  PubMed  CAS  Google Scholar 

  40. Kim C, Sakamoto A. Differences in the leukocyte response to incision during upper abdominal surgery with epidural versus general anesthesia. J Nippon Med Sch. 2006;73:4–9.

    Article  PubMed  Google Scholar 

  41. Summers C, Rankin SM, Condliffe AM, et al. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–24.

    Article  PubMed  CAS  Google Scholar 

  42. Krzyzanski W, Wiczling P, Lowe P, et al. Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol. 2010;50:101S–12S.

    Article  PubMed  CAS  Google Scholar 

  43. Athens JW, Haab OP, Raab SO, et al. Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest. 1961;40:989–95.

    Article  PubMed  CAS  Google Scholar 

  44. Gwak MS, Choi SJ, Kim JA, et al. Effects of gender on white blood cell populations and neutrophil-lymphocyte ratio following gastrectomy in patients with stomach cancer. J Korean Med Sci. 2007;22:S104–8.

    Article  PubMed  Google Scholar 

  45. Dancey JT, Deubelbeiss KA, Harker LA, et al. Neutrophil kinetics in man. J Clin Invest. 1976;58:705–15.

    Article  PubMed  CAS  Google Scholar 

  46. Sandström M, Lindman H, Nygren P, et al. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol. 2006;58:143–56.

    Article  PubMed  Google Scholar 

  47. Panetta JC, Schaiquevich P, Santana VM, et al. Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for pediatric neuroblastoma. Clin Cancer Res. 2008;14:318–25.

    Article  PubMed  CAS  Google Scholar 

  48. Ramon-Lopez A, Nalda-Molina R, Valenzuela B, et al. Semi-mechanistic model for neutropenia after high dose of chemotherapy in breast cancer patients. Pharm Res. 2009;26:1952–62.

    Article  PubMed  CAS  Google Scholar 

  49. Fliedner TM, Cronkite EP, Killmann SÅ, et al. Granulocytopoiesis: II. Emergence and pattern of labeling of neutrophils granulocytes in humans. Blood. 1964;24:683–700.

    PubMed  CAS  Google Scholar 

  50. Duignan JP, Collins PB, Johnson AH, Bouchier-Hayes D. The association of impaired neutrophil chemotaxis with postoperative surgical sepsis. Br J Surg. 1986;73:238–40.

    Article  PubMed  CAS  Google Scholar 

  51. Solomkin JS, Bauman MP, Nelson RD, et al. Neutrophils dysfunction during the course of intra-abdominal infection. Ann Surg. 1981;194:9–17.

    Article  PubMed  CAS  Google Scholar 

  52. van Dijk WC, Verbrugh HA, van Rijswijk RE, et al. Neutrophil function, serum opsonic activity, and delayed hypersensitivity in surgical patients. Surgery. 1982;92:21–9.

    PubMed  Google Scholar 

  53. Mollitt DL, Steele RW, Marmer DJ, et al. Surgically induced immunologic alterations in the child. J Pediatr Surg. 1984;19:818–22.

    Article  PubMed  CAS  Google Scholar 

  54. Walker RI, Willemze R. Neutrophil kinetics and the regulation of granulopoiesis. Rev Infect Dis. 1980;2:282–92.

    Article  PubMed  CAS  Google Scholar 

  55. Cartwright GE, Athens JW, Wintrobe MM. The kinetics of granulopoiesis in normal man. Blood. 1964;24:780–803.

    PubMed  CAS  Google Scholar 

  56. Hing J, Perez-Ruixo JJ, Stuyckens K, Soto-Matos A, Lopez-Lazaro L, Zannikos P. Mechanism-based pharmacokinetic-pharmacodynamic meta-analysis of trabectedin (ET-743, Yondelis) induced neutropenia. Clin Pharmacol Ther. 2008;83:130–43.

    Article  PubMed  CAS  Google Scholar 

  57. Schmitt A, Gladieff L, Laffont CM, et al. Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure. J Clin Oncol. 2010;28:4568–74.

    Article  PubMed  CAS  Google Scholar 

  58. Mohamed F, Sugarbaker PH. Carrier solutions for intraperitoneal chemotherapy. Surg Oncol Clin N Am. 2003;12:813–24.

    Article  PubMed  Google Scholar 

  59. Aapro MS, Cameron DA, Pettengell R, et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumors. Eur J Cancer. 2006;42:2433–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and the medical, nursing and laboratory staff of the Hospital Quirón Torrevieja who participated in the present study. The authors would like to thank Dr. Ricardo Nalda for his valuable help during the simulation exercise. This work was supported by Consellería de Sanidad of Comunidad Valenciana (grant GE-079/11). The authors also like to thank the peer reviewers of this manuscript for their valuable comments, which helped to improve the quality of the work and Dr. Ricardo Nalda-Molina for his comments and support at the beginning of this project.

Conflict of interest

Carlos Pérez-Ruixo, Belén Valenzuela, José Esteban Peris, Pedro Bretcha-Boix, Vanesa Escudero-Ortiz, José Farré-Alegre and Juan José Pérez-Ruixo have indicated no potential conflicts of interest, other than those reflected in their affiliations.

Disclaimer

The views expressed in this article are the personal view of the authors, reflecting their scientific knowledge of this topic, and should not be understood or quoted as being made on behalf of the companies where the authors work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén Valenzuela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Ruixo, C., Valenzuela, B., Peris, J.E. et al. Neutrophil Dynamics in Peritoneal Carcinomatosis Patients Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Oxaliplatin. Clin Pharmacokinet 52, 1111–1125 (2013). https://doi.org/10.1007/s40262-013-0092-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0092-3

Keywords

Navigation