Skip to main content
Log in

Pharmacokinetics and Pharmacokinetic–Pharmacodynamic Correlations of Therapeutic Peptides

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Peptides, defined as polymers of less than 50 amino acids with a molecular weight of less than 10 kDa, represent a fast-growing class of new therapeutics which has unique pharmacokinetic characteristics compared to large proteins or small molecule drugs. Unmodified peptides usually undergo extensive proteolytic cleavage, resulting in short plasma half-lives. As a result of their low permeability and susceptibility to catabolic degradation, therapeutic peptides usually have very limited oral bioavailability and are administered either by the intravenous, subcutaneous, or intramuscular route, although other routes such as nasal delivery are utilized as well. Distribution processes are mainly driven by a combination of diffusion and to a lesser degree convective extravasation dependent on the size of the peptide, with volumes of distribution frequently not larger than the volume of the extracellular body fluid. Owing to the ubiquitous availability of proteases and peptidases throughout the body, proteolytic degradation is not limited to classic elimination organs. Since peptides are generally freely filtered by the kidneys, glomerular filtration and subsequent renal metabolism by proteolysis contribute to the elimination of many therapeutic peptides. Although small peptides have usually limited immunogenicity, formation of anti-drug antibodies with subsequent hypersensitivity reactions has been described for some peptide therapeutics. Numerous strategies have been applied to improve the pharmacokinetic properties of therapeutic peptides, especially to overcome their metabolic instability, low permeability, and limited tissue residence time. Applied techniques include amino acid substitutions, modification of the peptide terminus, inclusion of disulfide bonds, and conjugation with polymers or macromolecules such as antibody fragments or albumin. Application of model-based pharmacokinetic–pharmacodynamic correlations has been widely used for therapeutic peptides in support of drug development and dosage regimen design, especially because their targets are often well-described endogenous regulatory pathways and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1–2):40–56.

    Article  PubMed  CAS  Google Scholar 

  2. Sato AK, Viswanathan M, Kent RB, et al. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17(6):638–42.

    Article  PubMed  CAS  Google Scholar 

  3. Latham PW. Therapeutic peptides revisited. Nat Biotechnol. 1999;17(8):755–7.

    Article  PubMed  CAS  Google Scholar 

  4. Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes. 2004;53(9):2181–9.

    Article  PubMed  CAS  Google Scholar 

  5. Zhao L, Ji P, Li Z, et al. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013;53(3):314–25.

    Article  PubMed  Google Scholar 

  6. Meibohm B, Braeckman R. Pharmacokinetics and pharmacodynamics of peptide and protein drugs. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology. New York: Informa Healthcare; 2008. p. 95–123.

    Google Scholar 

  7. Lin JH. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr Drug Metab. 2009;10(7):661–91.

    Article  PubMed  CAS  Google Scholar 

  8. Richter WF, Bhansali SG, Morris ME. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012;14(3):559–70.

    Article  PubMed  CAS  Google Scholar 

  9. Porter CJ, Edwards GA, Charman SA. Lymphatic transport of proteins after s.c. injection: implications of animal model selection. Adv Drug Deliv Rev. 2001;50(1–2):157–71.

    Article  PubMed  CAS  Google Scholar 

  10. Yanez JA, Remsberg CM, Sayre CL, et al. Flip-flop pharmacokinetics–delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv. 2011;2(5):643–72.

    Article  PubMed  Google Scholar 

  11. Nagaraja NV, Pechstein B, Erb K, et al. Pharmacokinetic and pharmacodynamic modeling of cetrorelix, an LH-RH antagonist, after subcutaneous administration in healthy premenopausal women. Clin Pharmacol Ther. 2000;68(6):617–25.

    Article  PubMed  CAS  Google Scholar 

  12. Jadhav PR, Agerso H, Tornoe CW, et al. Semi-mechanistic pharmacodynamic modeling for degarelix, a novel gonadotropin releasing hormone (GnRH) blocker. J Pharmacokinet Pharmacodyn. 2006;33(5):609–34.

    Article  PubMed  CAS  Google Scholar 

  13. Frank T. Population pharmacokinetics of lixisenatide, a once-daily human glucagon-like peptide-1 receptor agonist, in healthy subjects and in patients with type 2 diabetes. J Pharm Drug Deliv Res. 2013;2:1. doi:10.4172/2325-9604.1000112.

    Article  Google Scholar 

  14. Handelsman DJ, Swerdloff RS. Pharmacokinetics of gonadotropin-releasing hormone and its analogs. Endocr Rev. 1986;7(1):95–105.

    Article  PubMed  CAS  Google Scholar 

  15. Periti P, Mazzei T, Mini E. Clinical pharmacokinetics of depot leuprorelin. Clin Pharmacokinet. 2002;41(7):485–504.

    Article  PubMed  CAS  Google Scholar 

  16. Singh R, Singh S, Lillard JW. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci. 2008;97(7):2497–523.

    Article  PubMed  CAS  Google Scholar 

  17. Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv. 2005;2(1):29–42.

    Article  PubMed  Google Scholar 

  18. Mahato RI, Narang AS, Thoma L, et al. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst. 2003;20(2–3):153–214.

    Article  PubMed  CAS  Google Scholar 

  19. Karsdal MA, Henriksen K, Bay-Jensen AC, et al. Lessons learned from the development of oral calcitonin. J Clin Pharmacol. 2011;51(4):460–71.

    Article  PubMed  CAS  Google Scholar 

  20. Holt DW, Mueller EA, Kovarik JM, et al. Sandimmun neoral pharmacokinetics: impact of the new oral formulation. Transpl Proc. 1995;27(1):1434–7.

    CAS  Google Scholar 

  21. Binkley N, Bolognese M, Sidorowicz-Bialynicka A, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J Bone Miner Res. 2012;27(8):1821–9.

    Article  PubMed  CAS  Google Scholar 

  22. Antosova Z, Mackova M, Kral V, et al. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628–35.

    Article  PubMed  CAS  Google Scholar 

  23. Senel S, Kremer M, Nagy K, et al. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol. 2001;2(2):175–86.

    Article  PubMed  CAS  Google Scholar 

  24. Tang L, Persky AM, Hochhaus G, et al. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93(9):2184–204.

    Article  PubMed  CAS  Google Scholar 

  25. Tang L, Meibohm B. Pharmacokinetics of peptides and proteins. In: Meibohm B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs. Weinheim: Wiley-VCH; 2006.

    Google Scholar 

  26. Alton KB, Kosoglou T, Baker S, et al. Disposition of 14C-eptifibatide after intravenous administration to healthy men. Clin Ther. 1998;20(2):307–23.

    Article  PubMed  CAS  Google Scholar 

  27. Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52(1 Suppl):54S–62S.

    Article  PubMed  Google Scholar 

  28. Lam S, See S. Exenatide: a novel incretin mimetic agent for treating type 2 diabetes mellitus. Cardiol Rev. 2006;14(4):205–11. doi:10.1097/01.crd.0000223655.16253.e4.

    Article  PubMed  Google Scholar 

  29. LoRusso PM, Venkatakrishnan K, Ramanathan RK, et al. Pharmacokinetics and safety of bortezomib in patients with advanced malignancies and varying degrees of liver dysfunction: phase I NCI Organ Dysfunction Working Group Study NCI-6432. Clin Cancer Res. 2012;18(10):2954–63.

    Article  PubMed  CAS  Google Scholar 

  30. Hosseinimehr SJ, Tolmachev V, Orlova A. Liver uptake of radiolabeled targeting proteins and peptides: considerations for targeting peptide conjugate design. Drug Discov Today. 2012;17(21–22):1224–32.

    Article  PubMed  CAS  Google Scholar 

  31. Vickers AE, Fischer V, Connors S, et al. Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines. Drug Metab Dispos. 1992;20(6):802–9.

    PubMed  CAS  Google Scholar 

  32. Mager DE. Target-mediated drug disposition and dynamics. Biochem Pharmacol. 2006;72(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Samtani MN, Perez-Ruixo JJ, Brown KH, et al. Pharmacokinetic and pharmacodynamic modeling of pegylated thrombopoietin mimetic peptide (PEG-TPOm) after single intravenous dose administration in healthy subjects. J Clin Pharmacol. 2009;49(3):336–50.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y-M, Krzyzanski W, Doshi S, et al. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12(4):729–40.

    Article  PubMed  CAS  Google Scholar 

  35. Woo S, Krzyzanski W, Duliege A-M, et al. Population pharmacokinetics and pharmacodynamics of peptidic erythropoiesis receptor agonist (ERA) in healthy volunteers. J Clin Pharmacol. 2008;48(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  36. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–90.

    Article  PubMed  Google Scholar 

  37. Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012;14(2):296–302.

    Article  PubMed  CAS  Google Scholar 

  38. Rosenstock J, Balas B, Charbonnel B, et al. The fate of taspoglutide, a weekly GLP-1 receptor agonist, versus twice-daily exenatide for type 2 diabetes the T-emerge 2 trial. Diabetes Care. 2013;36(3):498–504.

    Article  PubMed  CAS  Google Scholar 

  39. Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transpl. 2005;20(suppl 6):vi3–9.

    Article  CAS  Google Scholar 

  40. Rosenberg AS, Worobec AS (2004) Risk-based approach to immunogenicity concerns of therapeutic protein products, part 2—considering host specific and product specific factors impacting immunogenicity. Biopharm Int. 17(12):34–42.

    Google Scholar 

  41. Ho C-L, Lin Y-L, Chen W-C, et al. Comparison of the immunogenicity of wasp venom peptides with or without carbohydrate moieties. Toxicon. 1998;36(1):217–21.

    Article  PubMed  CAS  Google Scholar 

  42. de Serres M, Ellis B, Dillberger JE, et al. Immunogenicity of thrombopoietin mimetic peptide GW395058 in BALB/c mice and New Zealand white rabbits: evaluation of the potential for thrombopoietin neutralizing antibody production in man. Stem Cells. 1999;17(4):203–9.

    Article  PubMed  Google Scholar 

  43. Kanduc D. Immunogenicity in peptide-immunotherapy: from self/nonself to similar/dissimilar sequences. In: Sigalov AB, editor. Multichain immune recognition receptor signaling: from spatiotemporal organization to human disease: from spatiotemporal organization to human disease. Advances in experimental medicine and biology, vol 640; 2008. New York: Springer, p. 198–207.

  44. Nattel S, Carlsson L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov. 2006;5(12):1034–49.

    Article  PubMed  CAS  Google Scholar 

  45. Welch BD, Francis JN, Redman JS, et al. Design of a potent d-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol. 2010;84(21):11235–44.

    Article  PubMed  CAS  Google Scholar 

  46. Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut. 1994;35(3 Suppl):S1–4.

    Article  PubMed  CAS  Google Scholar 

  47. Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67.

    Article  PubMed  CAS  Google Scholar 

  48. Reissmann T, Schally AV, Bouchard P, et al. The LHRH antagonist cetrorelix: a review. Hum Reprod Update. 2000;6(4):322–31.

    Article  PubMed  CAS  Google Scholar 

  49. Raun K, Hansen BS, Johansen NL, et al. Ipamorelin, the first selective growth hormone secretagogue. Eur J Endocrinol. 1998;139(5):552–61.

    Article  PubMed  CAS  Google Scholar 

  50. Gobburu J, Agersø H, Jusko W, et al. Pharmacokinetic–pharmacodynamic modeling of ipamorelin, a growth hormone releasing peptide, in human volunteers. Pharm Res. 1999;16(9):1412–6.

    Article  PubMed  CAS  Google Scholar 

  51. Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43(9):1664–9.

    Article  PubMed  CAS  Google Scholar 

  52. Verschraegen CF, Westphalen S, Hu W, et al. Phase II study of cetrorelix, a luteinizing hormone-releasing hormone antagonist in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2003;90(3):552–9.

    Article  PubMed  CAS  Google Scholar 

  53. Herédi-Szabó K, Murphy RF, Lovas S. Is lGnRH-III the most potent GnRH analog containing only natural amino acids that specifically inhibits the growth of human breast cancer cells? J Pept Sci. 2006;12(11):714–20.

    Article  PubMed  Google Scholar 

  54. Welch BD, VanDemark AP, Heroux A, et al. Potent d-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci USA. 2007;104(43):16828–33.

    Article  PubMed  CAS  Google Scholar 

  55. Ferdinandi ES, Brazeau P, High K, et al. Non-clinical pharmacology and safety evaluation of TH9507, a human growth hormone-releasing factor analogue. Basic Clin Pharmacol Toxicol. 2007;100(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  56. Busby RW, Bryant AP, Bartolini WP, et al. Linaclotide, through activation of guanylate cyclase C, acts locally in the gastrointestinal tract to elicit enhanced intestinal secretion and transit. Eur J Pharmacol. 2010;649(1–3):328–35.

    Article  PubMed  CAS  Google Scholar 

  57. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Article  PubMed  CAS  Google Scholar 

  58. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97(10):4167–83.

    Article  PubMed  CAS  Google Scholar 

  59. Gregoriadis G, Jain S, Papaioannou I, et al. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm. 2005;300(1–2):125–30.

    Article  PubMed  CAS  Google Scholar 

  60. Schellenberger V, Wang CW, Geething NC, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. 2009;27(12):1186–90.

    Article  PubMed  CAS  Google Scholar 

  61. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer. 2001;84(Suppl 1):3–10.

    Article  PubMed  CAS  Google Scholar 

  62. Dumont JA, Low SC, Peters RT, et al. Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. Biodrugs. 2006;20(3):151–60.

    Article  PubMed  CAS  Google Scholar 

  63. Wang YM, Sloey B, Wong T, et al. Investigation of the pharmacokinetics of romiplostim in rodents with a focus on the clearance mechanism. Pharm Res. 2011;28(8):1931–8.

    Article  PubMed  CAS  Google Scholar 

  64. Perez-Ruixo JJ, Krzyzanski W, Bouman-Thio E, et al. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects. Clin Pharmacokinet. 2009;48(9):601–13.

    Article  PubMed  CAS  Google Scholar 

  65. Doppalapudi VR, Tryder N, Li L, et al. Chemically programmed antibodies: endothelin receptor targeting CovX-Bodies. Bioorg Med Chem Lett. 2007;17(2):501–6.

    Article  PubMed  CAS  Google Scholar 

  66. Chuang VT, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res. 2002;19(5):569–77.

    Article  PubMed  Google Scholar 

  67. Subramanian GM, Fiscella M, Lamouse-Smith A, et al. Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol. 2007;25(12):1411–9.

    Article  PubMed  CAS  Google Scholar 

  68. Baggio LL, Huang Q, Cao X, et al. An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. Gastroenterology. 2008;134(4):1137–47.

    Article  PubMed  CAS  Google Scholar 

  69. Matthews JE, Stewart MW, De Boever EH, et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(12):4810–7.

    Article  PubMed  CAS  Google Scholar 

  70. Giannoukakis N. CJC-1131. ConjuChem. Curr Opin Investig Drugs. 2003;4(10):1245–9.

    PubMed  CAS  Google Scholar 

  71. LaBelle JL, Katz SG, Bird GH, et al. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J Clin Investig. 2012;122(6):2018–31.

    Article  PubMed  CAS  Google Scholar 

  72. Grigoryev Y. Stapled peptide to enter human testing, but affinity questions remain. Nat Med. 2013;19(2):120.

    Article  PubMed  CAS  Google Scholar 

  73. Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther. 1997;35(10):401–13.

    PubMed  CAS  Google Scholar 

  74. Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res. 1999;16(2):176–85.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang L, Pfister M, Meibohm B. Concepts and challenges in quantitative pharmacology and model-based drug development. AAPS J. 2008;10(4):552–9.

    Article  PubMed  CAS  Google Scholar 

  76. Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci. 2002;91(1):18–31.

    Article  PubMed  CAS  Google Scholar 

  77. Meibohm B, Laer S, Panetta JC, et al. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. 2005;7(2):E475–87.

    Article  PubMed  Google Scholar 

  78. Laer S, Barrett JS, Meibohm B. The in silico child: using simulation to guide pediatric drug development and manage pediatric pharmacotherapy. J Clin Pharmacol. 2009;49(8):889–904.

    Article  PubMed  CAS  Google Scholar 

  79. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Ann Rev Pharmacol Toxicol. 2011;51(1):45–73.

    Article  CAS  Google Scholar 

  80. Barrett JS, Della Casa Alberighi O, Laer S, et al. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  81. Thygesen P, Macheras P, Van Peer A. Physiologically-based PK/PD modelling of therapeutic macromolecules. Pharm Res. 2009;26(12):2543–50.

    Article  PubMed  CAS  Google Scholar 

  82. Agoram BM, Martin SW, van der Graaf PH. The role of mechanism-based pharmacokinetic–pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today. 2007;12(23–24):1018–24.

    Article  PubMed  CAS  Google Scholar 

  83. Tornoe CW, Agerso H, Nielsen HA, et al. Pharmacokinetic/pharmacodynamic modelling of GnRH antagonist degarelix: a comparison of the non-linear mixed-effects programs NONMEM and NLME. J Pharmacokinet Pharmacodyn. 2004;31(6):441–61.

    Article  PubMed  CAS  Google Scholar 

  84. Agerso H, Ynddal L, Sogaard B, et al. Pharmacokinetic and pharmacodynamic modeling of NN703, a growth hormone secretagogue, after a single po dose to human volunteers. J Clin Pharmacol. 2001;41(2):163–9.

    Article  PubMed  CAS  Google Scholar 

  85. Perez-Ruixo JJ, Kimko HC, Chow AT, et al. Population cell life span models for effects of drugs following indirect mechanisms of action. J Pharmacokinet Pharmacodyn. 2005;32(5–6):767–93.

    Article  PubMed  Google Scholar 

  86. Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20(24):4713–21.

    Article  PubMed  Google Scholar 

  87. Budha NR, Kovar A, Meibohm B. Comparative performance of cell life span and cell transit models for describing erythropoietic drug effects. AAPS J. 2011;13(4):650–61.

    Article  PubMed  CAS  Google Scholar 

  88. Ptachcinski RJ, Venkataramanan R, Burckart GJ. Clinical pharmacokinetics of cyclosporin. Clin Pharmacokinet. 1986;11(2):107–32.

    Article  PubMed  CAS  Google Scholar 

  89. Yates CR, Zhang W, Song P, et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol. 2003;43(6):555–64.

    PubMed  CAS  Google Scholar 

  90. Argenti D, Ireland D, Heald DL. A pharmacokinetic and pharmacodynamic comparison of desmopressin administered as whole, chewed and crushed tablets, and as an oral solution. J Urol. 2001;165(5):1446–51.

    Article  PubMed  CAS  Google Scholar 

  91. Gao W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of exendin-4 in type 2 diabetic Goto-Kakizaki rats. J Pharmacol Exp Ther. 2011;336(3):881–90.

    Article  PubMed  CAS  Google Scholar 

  92. Agerso H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci. 2003;19(2–3):141–50.

    Article  PubMed  CAS  Google Scholar 

  93. Roblitz S, Stotzel C, Deuflhard P, et al. A mathematical model of the human menstrual cycle for the administration of GnRH analogues. J Theor Biol. 2013;321:8–27.

    Article  PubMed  Google Scholar 

  94. Stanley TL, Chen CY, Branch KL, et al. Effects of a growth hormone-releasing hormone analog on endogenous GH pulsatility and insulin sensitivity in healthy men. J Clin Endocrinol Metab. 2011;96(1):150–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding have been used to facilitate the development of this manuscript. Lei Diao and Bernd Meibohm have no potential conflict of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Meibohm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, L., Meibohm, B. Pharmacokinetics and Pharmacokinetic–Pharmacodynamic Correlations of Therapeutic Peptides. Clin Pharmacokinet 52, 855–868 (2013). https://doi.org/10.1007/s40262-013-0079-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0079-0

Keywords

Navigation