Skip to main content

Advertisement

Log in

Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t½) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t½ of 6–8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called ‘pseudo-irreversible’ inhibitor of acetylcholinesterase and butyrylcholinesterase. The t½ of the drug is very short (1–2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t½ of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better clinical response to acetylcholinesterase inhibitors. However, confirmation studies in larger populations are necessary to establish evidence of which subgroups of patients will most likely benefit from anti-dementia drugs. The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of the four commonly used anti-dementia drugs and to give an overview on the current knowledge of pharmacogenetics in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qaseem A, Snow V, Cross JT Jr, et al. Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2008;148(5):370–8.

    Article  PubMed  Google Scholar 

  2. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.

    Article  PubMed  Google Scholar 

  3. Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry. 2007;20(4):380–5.

    Article  PubMed  Google Scholar 

  4. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–52.

    Article  PubMed  Google Scholar 

  5. Blennow K, De Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.

    Article  PubMed  CAS  Google Scholar 

  6. Francis PT, Ramirez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology. 2010;59(4–5):221–9.

    Article  PubMed  CAS  Google Scholar 

  7. Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306(3):821–7.

    Article  PubMed  CAS  Google Scholar 

  8. Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. 2006;113(11):1625–44.

    Article  PubMed  CAS  Google Scholar 

  9. Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm. 2006;113(11):1671–7.

    Article  PubMed  CAS  Google Scholar 

  10. Wilcock GK. Memantine for the treatment of dementia. Lancet Neurol. 2003;2(8):503–5.

    Article  PubMed  CAS  Google Scholar 

  11. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.

    Article  PubMed  CAS  Google Scholar 

  12. Obulesu M, Somashekhar R, Venu R. Genetics of Alzheimer’s disease: an insight into presenilins and apolipoprotein e instigated neurodegeneration. Int J Neurosci. 2011;121(5):229–36.

    Article  PubMed  CAS  Google Scholar 

  13. Crentsil V. The pharmacogenomics of Alzheimer’s disease. Ageing Res Rev. 2004;3(2):153–69.

    Article  PubMed  CAS  Google Scholar 

  14. Sleegers K, Lambert JC, Bertram L, et al. The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet. 2010;26(2):84–93.

    Article  PubMed  CAS  Google Scholar 

  15. Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet. 2010;19(R1):R4–11.

    Article  PubMed  CAS  Google Scholar 

  16. FDA approved drug products. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Accessed 19 Mar 2012.

  17. European Medicine Agency. Search for medicines. http://www.ema.europa.eu/ema/index.jsp?curl=/pages/home/Home_Page.jsp. Accessed 19 Mar 2012.

  18. Compendium Suisse des Medicaments. Basel, Switzerland: Documed SA. http://www.compendium.ch/. Accessed 19 Mar 2012.

  19. Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719–39.

    Article  PubMed  CAS  Google Scholar 

  20. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006; (2):CD003154.

  21. Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379–97.

    Article  PubMed  Google Scholar 

  22. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1):CD005593.

  23. Raschetti R, Maggini M, Sorrentino GC, et al. A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer’s disease. Eur J Clin Pharmacol. 2005;61(5–6):361–8.

    Article  PubMed  CAS  Google Scholar 

  24. Mega MS, Masterman DM, O’Connor SM, et al. The spectrum of behavioral responses to cholinesterase inhibitor therapy in Alzheimer disease. Arch Neurol. 1999;56(11):1388–93.

    Article  PubMed  CAS  Google Scholar 

  25. Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ. 2003;169(6):557–64.

    PubMed  Google Scholar 

  26. Clerici F, Vanacore N, Elia A, et al. Memantine in moderately-severe-to-severe Alzheimer’s disease: a postmarketing surveillance study. Drugs Aging. 2009;26(4):321–32.

    Article  PubMed  CAS  Google Scholar 

  27. Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.

    Article  PubMed  CAS  Google Scholar 

  28. Van Marum RJ. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2009;5:237–47.

    Article  PubMed  Google Scholar 

  29. Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000;356(9242):1667–71.

    Article  PubMed  CAS  Google Scholar 

  30. Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res. 2007;4(4):479–500.

    Article  PubMed  CAS  Google Scholar 

  31. Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease? Drugs Aging. 2001;18(12):891–8.

    Article  PubMed  CAS  Google Scholar 

  32. Wilkinson DG, Francis PT, Schwam E, et al. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004;21(7):453–78.

    Article  PubMed  CAS  Google Scholar 

  33. Weinstock M. Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer’s disease. CNS Drugs. 1999;12(4):307–23.

    Article  CAS  Google Scholar 

  34. Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9(1):101–24.

    Article  PubMed  CAS  Google Scholar 

  35. Fang L, Pan Y, Muzyka JL, et al. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations. J Phys Chem B. 2011;115(27):8797–805.

    Article  PubMed  CAS  Google Scholar 

  36. Kosasa T, Kuriya Y, Matsui K, et al. Inhibitory effects of donepezil hydrochloride (E2020) on cholinesterase activity in brain and peripheral tissues of young and aged rats. Eur J Pharmacol. 1999;386(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  37. Villalobos A, Blake JF, Biggers CK, et al. Novel benzisoxazole derivatives as potent and selective inhibitors of acetylcholinesterase. J Med Chem. 1994;37(17):2721–34.

    Article  PubMed  CAS  Google Scholar 

  38. Farlow MR. Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383–92.

    Article  PubMed  CAS  Google Scholar 

  39. Thomsen T, Kewitz H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci. 1990;46(21):1553–8.

    Article  PubMed  CAS  Google Scholar 

  40. Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer’s disease. Drugs. 2000;60(5):1095–122.

    Article  PubMed  CAS  Google Scholar 

  41. Maelicke A, Schrattenholz A, Samochocki M, et al. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res. 2000;113(1–2):199–206.

    Article  PubMed  CAS  Google Scholar 

  42. Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 1998;20(4):634–47.

    Article  PubMed  CAS  Google Scholar 

  43. Kennedy JS, Polinsky RJ, Johnson B, et al. Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. J Clin Psychopharmacol. 1999;19(6):513–21.

    Article  PubMed  CAS  Google Scholar 

  44. Hossain M, Jhee SS, Shiovitz T, et al. Estimation of the absolute bioavailability of rivastigmine in patients with mild to moderate dementia of the Alzheimer’s type. Clin Pharmacokinet. 2002;41(3):225–34.

    Article  PubMed  CAS  Google Scholar 

  45. Jann MW. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy. 2000;20(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  46. Enz A, Amstutz R, Boddeke H, et al. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res. 1993;98:431–8.

    Article  PubMed  CAS  Google Scholar 

  47. Enz A, Boddeke H, Gray J, et al. Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann N Y Acad Sci. 1991;640:272–5.

    PubMed  CAS  Google Scholar 

  48. Thomson Reuters. Micromedex® Healthcare Series 2.0, Drug® evaluations rivastigmine. http://www.thomsonhc.com/micromedex2/librarian. Accessed 26 Sep 2012.

  49. Bryson HM, Benfield P. Donepezil. Drugs Aging. 1997;10:234–9.

    Article  PubMed  CAS  Google Scholar 

  50. Lenzken SC, Lanni C, Govoni S, et al. Nicotinic component of galantamine in the regulation of amyloid precursor protein processing. Chem Biol Interact. 2007;165(2):138–45.

    Article  PubMed  CAS  Google Scholar 

  51. Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem Int. 2008;53(5):103–11.

    Article  PubMed  CAS  Google Scholar 

  52. Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem. 2004;90(6):1489–99.

    Article  PubMed  CAS  Google Scholar 

  53. Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res. 2003;28(3–4):515–22.

    Article  PubMed  CAS  Google Scholar 

  54. Parsons CG, Stoffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system: too little activation is bad, too much is even worse. Neuropharmacology. 2007;53(6):699–723.

    Article  PubMed  CAS  Google Scholar 

  55. Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders: memantine, a new hope. Pharmacol Res. 2005;51(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  56. Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int J Geriatr Psychiatry. 2003;18(Suppl 1):S23–32.

    Article  PubMed  Google Scholar 

  57. Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007;8(10):803–8.

    Article  PubMed  CAS  Google Scholar 

  58. Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.

    Article  PubMed  CAS  Google Scholar 

  59. Dantoine T, Auriacombe S, Sarazin M, et al. Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int J Clin Pract. 2006;60(1):110–8.

    Article  PubMed  CAS  Google Scholar 

  60. Atri A, Shaughnessy LW, Locascio JJ, et al. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(3):209–21.

    Article  PubMed  CAS  Google Scholar 

  61. Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(6):600–7.

    Article  PubMed  CAS  Google Scholar 

  62. Farlow MR, Alva G, Meng X, et al. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr Med Res Opin. 2010;26(2):263–9.

    Article  PubMed  CAS  Google Scholar 

  63. Schneider LS. Discontinuing donepezil or starting memantine for Alzheimer’s disease. N Engl J Med. 2012;366(10):957–9.

    Article  PubMed  CAS  Google Scholar 

  64. Shintani EY, Uchida KM. Donepezil: an anticholinesterase inhibitor for Alzheimer’s disease. Am J Health Syst Pharm. 1997;54(24):2805–10.

    PubMed  CAS  Google Scholar 

  65. Mihara M, Ohnishi A, Tomono Y, et al. Pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy male volunteers. Int J Clin Pharmacol Ther Toxicol. 1993;31(5):223–9.

    PubMed  CAS  Google Scholar 

  66. FDA. Center for Drug Evaluation and Research. Application number: 022568. Clinical pharmacology and biopharmaceutics review(s). http://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022568Orig1s000ClinPharmR.pdf. Accessed 26 Sep 2012.

  67. Rogers SL, Cooper NM, Sukovaty R, et al. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following multiple oral doses. Br J Clin Pharmacol. 1998;46(Suppl. 1):7–12.

    PubMed  CAS  Google Scholar 

  68. Tiseo PJ, Rogers SL, Friedhoff LT. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br J Clin Pharmacol. 1998;46(Suppl 1):13–8.

    PubMed  CAS  Google Scholar 

  69. Ohnishi A, Mihara M, Kamakura H, et al. Comparison of the pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy young and elderly subjects. J Clin Pharmacol. 1993;33(11):1086–91.

    Article  PubMed  CAS  Google Scholar 

  70. Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy volunteers: a single-dose study. Br J Clin Pharmacol. 1998;46(Suppl 1):19–24.

    PubMed  CAS  Google Scholar 

  71. Matsui K, Taniguchi S, Yoshimura T. Correlation of the intrinsic clearance of donepezil (Aricept) between in vivo and in vitro studies in rat, dog and human. Xenobiotica. 1999;29(11):1059–72.

    Article  PubMed  CAS  Google Scholar 

  72. Matsui K, Mishima M, Nagai Y, et al. Absorption, distribution, metabolism, and excretion of donepezil (Aricept) after a single oral administration to Rat. Drug Metab Dispos. 1999;27(12):1406–14.

    PubMed  CAS  Google Scholar 

  73. Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and ketoconazole: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(Suppl 1):30–4.

    PubMed  CAS  Google Scholar 

  74. Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and cimetidine: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(Suppl 1):25–9.

    PubMed  CAS  Google Scholar 

  75. Nagy CF, Kumar D, Cullen EI, et al. Steady-state pharmacokinetics and safety of donepezil HCl in subjects with moderately impaired renal function. Br J Clin Pharmacol. 2004;58(Suppl 1):18–24.

    Article  PubMed  CAS  Google Scholar 

  76. Tiseo PJ, Foley K, Friedhoff LT. An evaluation of the pharmacokinetics of donepezil HCl in patients with moderately to severely impaired renal function. Br J Clin Pharmacol. 1998;46(Suppl 1):56–60.

    PubMed  CAS  Google Scholar 

  77. Reyes JF, Vargas R, Kumar D, et al. Steady-state pharmacokinetics, pharmacodynamics and tolerability of donepezil hydrochloride in hepatically impaired patients. Br J Clin Pharmacol. 2004;58(Suppl 1):9–17.

    Article  PubMed  CAS  Google Scholar 

  78. Bickel U, Thomsen T, Weber W, et al. Pharmacokinetics of galanthamine in humans and corresponding cholinesterase inhibition. Clin Pharmacol Ther. 1991;50(4):420–8.

    Article  PubMed  CAS  Google Scholar 

  79. Jones RW, Cooper DM, Haworth J, et al. The effect of food on the absorption of galanthamine in healthy elderly volunteers. Br J Clin Pharmacol. 1996;42:671P–2P.

    Google Scholar 

  80. Zhao Q, Janssens L, Verhaeghe T, et al. Pharmacokinetics of extended-release and immediate-release formulations of galantamine at steady state in healthy volunteers. Curr Med Res Opin. 2005;21(10):1547–54.

    Article  PubMed  CAS  Google Scholar 

  81. Zhao Q, Brett M, Van ON, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42(9):1002–10.

    PubMed  CAS  Google Scholar 

  82. Zhao Q, Iyer GR, Verhaeghe T, et al. Pharmacokinetics and safety of galantamine in subjects with hepatic impairment and healthy volunteers. J Clin Pharmacol. 2002;42:428–36.

    PubMed  CAS  Google Scholar 

  83. Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos. 2002;30(5):553–63.

    Article  PubMed  CAS  Google Scholar 

  84. Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics. 1999;9:661–8.

    Article  PubMed  CAS  Google Scholar 

  85. Trademark (galantamine HBR) extended-release capsules. http://www.accessdata.fda.gov/drugsatfda_docs/label/2004/021615lbl.pdf. Accessed 26 Apr 2012.

  86. Piotrovsky V, Van Peer A, Van Osselaer N, et al. Galantamine population pharmacokinetics in patients with Alzheimer’s disease: modeling and simulations. J Clin Pharmacol. 2003;43(5):514–23.

    PubMed  CAS  Google Scholar 

  87. Lefevre G, Sedek G, Jhee SS, et al. Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther. 2008;83(1):106–14.

    Article  PubMed  CAS  Google Scholar 

  88. Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand. 1998;97(4):244–50.

    Article  PubMed  CAS  Google Scholar 

  89. Gobburu JV, Tammara V, Lesko L, et al. Pharmacokinetic-pharmacodynamic modeling of rivastigmine, a cholinesterase inhibitor, in patients with Alzheimer’s disease. J Clin Pharmacol. 2001;41(10):1082–90.

    Article  PubMed  CAS  Google Scholar 

  90. Spencer CM, Noble S. Rivastigmine: a review of its use in Alzheimer’s disease. Drugs Aging. 1998;13(5):391–411.

    Article  PubMed  CAS  Google Scholar 

  91. Mercier F, Lefevre G, Huang HL, et al. Rivastigmine exposure provided by a transdermal patch versus capsules. Curr Med Res Opin. 2007;23(12):3199–204.

    Article  PubMed  CAS  Google Scholar 

  92. Cummings J, Lefevre G, Small G, et al. Pharmacokinetic rationale for the rivastigmine patch. Neurology. 2007;69(4 Suppl 1):S10–3.

    Article  PubMed  CAS  Google Scholar 

  93. Lefevre G, Buche M, Sedek G, et al. Similar rivastigmine pharmacokinetics and pharmacodynamics in Japanese and white healthy participants following the application of novel rivastigmine patch. J Clin Pharmacol. 2009;49(4):430–43.

    Article  PubMed  CAS  Google Scholar 

  94. Schran HF. The effects of renal and hepatic impairment on the disposition of the acetylcholinesterase inhibitor SDZ ENA 713. Pharm Res. 1996; 13(PPDM 8143):S428.

    Google Scholar 

  95. EMEA. Memantine scientific discussion. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000378/WC500029674.pdf. Accessed 26 Apr 2012.

  96. Periclou A, Ventura D, Rao N, et al. Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther. 2006;79(1):134–43.

    Article  PubMed  CAS  Google Scholar 

  97. Liu MY, Meng SN, Wu HZ, et al. Pharmacokinetics of single-dose and multiple-dose memantine in healthy chinese volunteers using an analytic method of liquid chromatography-tandem mass spectrometry. Clin Ther. 2008;30(4):641–53.

    Article  PubMed  CAS  Google Scholar 

  98. Mobius HJ, Stoffler A, Graham SM. Memantine hydrochloride: pharmacological and clinical profile. Drugs Today (Barc). 2004;40(8):685–95.

    Article  Google Scholar 

  99. Kornhuber J, Kennepohl EM, Bleich S, et al. Memantine pharmacotherapy: a naturalistic study using a population pharmacokinetic approach. Clin Pharmacokinet. 2007;46(7):599–612.

    Article  PubMed  CAS  Google Scholar 

  100. EMEA. EPAR (european public assessment report): Axura. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000378/WC500029678.pdf. Accessed 26 Apr 2012.

  101. Micuda S, Mundlova L, Anzenbacherova E, et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004;60(8):583–9.

    Article  PubMed  CAS  Google Scholar 

  102. Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.

    PubMed  CAS  Google Scholar 

  103. Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.

    Article  PubMed  Google Scholar 

  104. Freudenthaler S, Meineke I, Schreeb KH, et al. Influence of urine pH and urinary flow on the renal excretion of memantine. Br J Clin Pharmacol. 1998;46(6):541–6.

    Article  PubMed  CAS  Google Scholar 

  105. Rao N, Chou T, Ventura D, et al. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27(10):1596–606.

    Article  PubMed  CAS  Google Scholar 

  106. The human cytochrome P450 (CYP) allele nomenclature database. http://www.cypalleles.ki.se. Accessed 26 Apr 2012.

  107. Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.

    Article  PubMed  CAS  Google Scholar 

  108. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009;48(11):689–723.

    Article  PubMed  CAS  Google Scholar 

  109. Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol. 2006;62(9):721–6.

    Article  PubMed  CAS  Google Scholar 

  110. Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73(10):761–7.

    Article  PubMed  CAS  Google Scholar 

  111. Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics. 2011;21(4):225–30.

    PubMed  CAS  Google Scholar 

  112. Chianella C, Gragnaniello D, Maisano Delser P. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol. 2011;67(11):1147–57.

    Article  PubMed  CAS  Google Scholar 

  113. Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit (in press).

  114. Dobrinas M, Eap CB. Cytochrome P4503A pharmacogenetics. HIV PGX. 2007;2(2):1–5.

    Google Scholar 

  115. Siccardi M, D’Avolio A, Baietto L, et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C–>T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis. 2008;47:1222–5.

    Article  PubMed  CAS  Google Scholar 

  116. Oneda B, Crettol S, Jaquenoud Sirot E. The P450 oxidoreductase is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogen Genomics. 2009;19(11):877–83.

    Article  CAS  Google Scholar 

  117. Oleson L, von Moltke LL, Greenblatt DJ, et al. Identification of polymorphisms in the 3’-untranslated region of the human pregnane X receptor (PXR) gene associated with variability in cytochrome P450 3A (CYP3A) metabolism. Xenobiotica. 2010;40(2):146–62.

    Article  PubMed  CAS  Google Scholar 

  118. Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  119. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61.

    Article  PubMed  CAS  Google Scholar 

  120. Scacchi R, Gambina G, Moretto G, et al. Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(4):502–7.

    Article  PubMed  CAS  Google Scholar 

  121. Blesa R, Bullock R, He Y, et al. Effect of butyrylcholinesterase genotype on the response to rivastigmine or donepezil in younger patients with Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(11):771–4.

    Article  PubMed  CAS  Google Scholar 

  122. Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(2):75–7.

    Article  PubMed  CAS  Google Scholar 

  123. Pola R, Flex A, Ciaburri M, et al. Responsiveness to cholinesterase inhibitors in Alzheimer’s disease: a possible role for the 192 Q/R polymorphism of the PON-1 gene. Neurosci Lett. 2005;382(3):338–41.

    Article  PubMed  CAS  Google Scholar 

  124. Klimkowicz-Mrowiec A, Marona M, Spisak K, et al. Paraoxonase 1 gene polymorphisms do not influence the response to treatment in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32(1):26–31.

    Article  PubMed  CAS  Google Scholar 

  125. Weiner DM, Goodman MW, Colpitts TM, et al. Functional screening of drug target genes: m1 muscarinic acetylcholine receptor phenotypes in degenerative dementias. Am J Pharmacogenomics. 2004;4(2):119–28.

    Article  PubMed  CAS  Google Scholar 

  126. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10(3):241–52.

    Article  PubMed  CAS  Google Scholar 

  127. Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA. 1995;92(26):12260–4.

    Article  PubMed  CAS  Google Scholar 

  128. Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489–95.

    Article  PubMed  CAS  Google Scholar 

  129. Rigaud AS, Traykov L, Latour F, et al. Presence or absence of at least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer’s disease. Pharmacogenetics. 2002;12(5):415–20.

    Article  PubMed  CAS  Google Scholar 

  130. Greenberg SM, Tennis MK, Brown LB, et al. Donepezil therapy in clinical practice: a randomized crossover study. Arch Neurol. 2000;57(1):94–9.

    Article  PubMed  CAS  Google Scholar 

  131. Kanaya K, Abe S, Sakai M, et al. Changes in cognitive functions of patients with dementia of the Alzheimer type following long-term administration of donepezil hydrochloride: relating to changes attributable to differences in apolipoprotein E phenotype. Geriatr Gerontol Int. 2010;10(1):25–31.

    Article  PubMed  Google Scholar 

  132. Bizzarro A, Marra C, Acciarri A, et al. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20(4):254–61.

    Article  PubMed  CAS  Google Scholar 

  133. Aerssens J, Raeymaekers P, Lilienfeld S, et al. APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2001;12(2):69–77.

    Article  PubMed  CAS  Google Scholar 

  134. Suh GH, Jung HY, Lee CU, et al. Effect of the apolipoprotein E epsilon4 allele on the efficacy and tolerability of galantamine in the treatment of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2006;21(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  135. Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology. 2000;54(12):2261–8.

    Article  PubMed  CAS  Google Scholar 

  136. Blesa R, Aguilar M, Casanova JP, et al. Relationship between the efficacy of rivastigmine and apolipoprotein E (epsilon4) in patients with mild to moderately severe Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(4):248–54.

    Article  PubMed  CAS  Google Scholar 

  137. Farlow M, Lane R, Kudaravalli S, et al. Differential qualitative responses to rivastigmine in APOE epsilon 4 carriers and noncarriers. Pharmacogenomics J. 2004;4(5):332–5.

    Article  PubMed  CAS  Google Scholar 

  138. Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet (in press). doi:10.1007/s40262-013-0032-2.

  139. Zhao Q, Tang XC. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol. 2002;455(2–3):101–7.

    Article  PubMed  CAS  Google Scholar 

  140. Yao C, Raoufinia A, Gold M, et al. Steady-state pharmacokinetics of galantamine are not affected by addition of memantine in healthy subjects. J Clin Pharmacol. 2005;45(5):519–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the editorial assistance of Mrs K. Powell Golay and the bibliographical help of Mrs E. Ponce.

Conflict of interest

The authors declare no conflict of interest.

Funding

This work was supported by internal funds of the Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, University Hospital Lausanne, and by a private donation (Irène Allenbach) in support of research on Alzheimer disease. C. B. Eap received honoraria for conferences and teaching CME courses from Eli Lily, AstraZeneca, Bristol-Myers-Squibb, Essex Chemie, GlaxoSmithKline, Janssen-Cilag, Lundbeck, Novo Nordisk and Sandoz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin B. Eap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noetzli, M., Eap, C.B. Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease. Clin Pharmacokinet 52, 225–241 (2013). https://doi.org/10.1007/s40262-013-0038-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0038-9

Keywords

Navigation