Skip to main content
Log in

Population Pharmacokinetics of Tranexamic Acid in Paediatric Patients Undergoing Craniosynostosis Surgery

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Tranexamic acid (TXA) effectively reduces blood loss and transfusion requirements during craniofacial surgery. The pharmacokinetics of TXA have not been fully characterized in paediatric patients and dosing regimens remain diverse in practice. A mixed-effects population analysis would characterize patient variability and guide dosing practices.

Objective

The objective of this study was to conduct a population pharmacokinetic analysis and develop a model to predict an effective TXA dosing regimen for children with craniosynostosis undergoing cranial remodelling procedures.

Methods

The treatment arm of a previously reported placebo-controlled efficacy trial was analysed. Twenty-three patients with a mean age 23 ± 19 months received a TXA loading dose of 50 mg/kg over 15 min at a constant rate, followed by a 5 mg/kg/h maintenance infusion during surgery. TXA plasma concentrations were measured and modelled with a non-linear mixed-effects strategy using Monolix 4.1 and NONMEM® 7.2.

Results

TXA pharmacokinetics were adequately described by a two-compartment open model with systemic clearance (CL) depending on bodyweight (WT) and age. The apparent volume of distribution of the central compartment (V1) was also dependent on bodyweight. Both the inter-compartmental clearance (Q) and the apparent volume of distribution of the peripheral compartment (V2) were independent of any covariate. The final model may be summarized as: CL (L/h) = [2.3 × (WT/12)1.59 × AGE–0.0934] × eη1, V1 (L) = [2.34 × (WT/12)1.4] × eη2, Q (L/h) = 2.77 × eη3 and V2 (L) = 1.53 × eη4, where each η corresponds to the inter-patient variability for each parameter. No significant correlation was found between blood volume loss and steady-state TXA concentrations. Based on this model and simulations, lower loading doses than used in the clinical study should produce significantly lower peak concentrations while maintaining similar steady-state concentrations.

Conclusions

A two-compartment model with covariates bodyweight and age adequately characterized the disposition of TXA. A loading dose of 10 mg/kg over 15 min followed by a 5 mg/kg/h maintenance infusion was simulated to produce steady-state TXA plasma concentrations above the 16 μg/mL threshold. This dosing scheme reduces the initial high peaks observed with the larger dose of 50 mg/kg over 15 min used in our previous clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chadduck W. Craniosynostosis. In: Cheek WR, Marlin AE, McLone DG, editors. Pediatric neurosurgery. 3rd ed. Houston: W.B. Saunders Company; 1994. p. 111–23.

    Google Scholar 

  2. Reiner D. Intracranial pressure in craniosynostosis: pre- and postoperative recordings, correction with functional results. In: Edgerton M, Baltimore JS, editors. Scientific foundation and surgical treatment of craniosynostosis. Baltimore: Williams and Wilkins; 1989. p. 263–9.

    Google Scholar 

  3. Vamvakas EC. Long-term survival rate of pediatric patients after blood transfusion. Transfusion. 2008;48:2478–80.

    Article  PubMed  Google Scholar 

  4. Czerwinski M, Hopper RA, Gruss J, Fearon JA. Major morbidity and mortality rates in craniofacial surgery: an analysis of 8101 major procedures. Plast Reconstr Surg. 2010;126:181–6.

    PubMed  CAS  Google Scholar 

  5. Phillips RJ, Mulliken JB. Venous air embolism during a craniofacial procedure. Plast Reconstr Surg. 1988;82:155–9.

    PubMed  CAS  Google Scholar 

  6. Faberowski LW, Black S, Mickle JP. Blood loss and transfusion practice in the perioperative management of craniosynostosis repair. J Neurosurg Anesthesiol. 1999;11:167–72.

    Article  PubMed  CAS  Google Scholar 

  7. Buntain SG, Pabari M. Massive transfusion and hyperkalaemic cardiac arrest in craniofacial surgery in a child. Anaesth Intensive Care. 1999;27:530–3.

    PubMed  CAS  Google Scholar 

  8. Williams GD, Ellenbogen RG, Gruss JS. Abnormal coagulation during pediatric craniofacial surgery. Pediatr Neurosurg. 2001;35:5–12.

    Article  PubMed  CAS  Google Scholar 

  9. Ririe DG, Lantz PE, Glazier SS, Argenta LC. Transfusion-related acute lung injury in an infant during craniofacial surgery. Anesth Analg. 2005;101:1003–6.

    Article  PubMed  Google Scholar 

  10. Tuncbilek G, Vargel I, Erdem A, Mavili ME, Benli K, Erk Y. Blood loss and transfusion rates during repair of craniofacial deformities. J Craniofac Surg. 2005;16:59–62.

    Article  PubMed  Google Scholar 

  11. Stricker PA, Shaw TL, Desouza DG, Hernandez SV, Bartlett SP, Friedman DF, et al. Blood loss, replacement, and associated morbidity in infants and children undergoing craniofacial surgery. Paediatr Anaesth. 2010;20:150–9.

    Article  PubMed  Google Scholar 

  12. Goobie SM, Meier PM, Pereira LM, McGowan FX, Prescilla RP, Scharp LA, et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind placebo controlled trial. Anesthesiology. 2011;114(4):862–71.

    Article  PubMed  CAS  Google Scholar 

  13. Dadure C, Sauter M, Bringuier S, Bigorre M, Raux O, Rochette A, et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized, double-blind study. Anesthesiology. 2011;114:856–61.

    Article  PubMed  CAS  Google Scholar 

  14. Dunn CJ, Goa KL. Tranexamic acid: a review of its use in surgery and other indications. Drugs. 1999;57:1005–32.

    Article  PubMed  CAS  Google Scholar 

  15. Reid R, Zimmerman A, Laussen P, Mayer J, Gorlin J, Borrows F. The efficacy of tranexamic acid versus placebo in decreasing blood loss in pediatric patients undergoing repeat cardiac surgery. Anesth Analg. 1997;84:990–6.

    PubMed  CAS  Google Scholar 

  16. Fiechtner BK, Nuttall GA, Johnson ME, Dong Y, Sujirattanawimol N, Oliver WC, et al. Plasma tranexamic acid concentrations during cardiopulmonary bypass. Anesth Analg. 2001;92:1131–6.

    Article  PubMed  CAS  Google Scholar 

  17. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology. 2005;102:727–32.

    Article  PubMed  CAS  Google Scholar 

  18. Eaton MP. Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg. 2008;106:1087–100.

    Article  PubMed  CAS  Google Scholar 

  19. Horrow JC, Van Riper DF, Strong MD, Grunewald KE, Parmet JL. The dose-response relationship to tranexamic acid. Anesthesiology. 1995;82:383–92.

    Article  PubMed  CAS  Google Scholar 

  20. Murkin JM, Falter F, Granton J, Young B, Burt C, Chu M. High-dose tranexamic acid is associated with nonischemic clinical seizures in cardiac surgical patients. Anesth Analg. 2010;110:350–3.

    Article  PubMed  CAS  Google Scholar 

  21. Ngaage DL, Bland JM. Lessons from aprotinin: is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomised and large matched observational studies. Eur J Cardiothorac Surg. 2010;37:1375–83.

    Article  PubMed  Google Scholar 

  22. Breuer T, Martin K, Wilhelm M, Wiesner G, Schreiber C, Hess J, et al. The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2009;35:167–71.

    Article  PubMed  Google Scholar 

  23. Martin K, Breuer T, Gertler R, Hapfelmeier A, Schreiber C, Lange R, et al. Tranexamic acid versus varepsilon-aminocaproic acid: efficacy and safety in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2011;39:892–7.

    Article  PubMed  Google Scholar 

  24. Soslau G, Horrow J, Brodsky I. Effect of tranexamic acid on platelet ADP during extracorporeal circulation. Am J Hematol. 1991;38:113–9.

    Article  PubMed  CAS  Google Scholar 

  25. Eriksson O, Kjellman H, Pilbrant A, Schannong M. Pharmacokinetics of tranexamic acid after intravenous administration to normal volunteers. Eur J Clin Pharmacol. 1974;7:375–80.

    Article  PubMed  CAS  Google Scholar 

  26. Pilbrant A, Schannong M, Vessman J. Pharmacokinetics and bioavailability of tranexamic acid. Eur J Clin Pharmacol. 1981;20:65–72.

    Article  PubMed  CAS  Google Scholar 

  27. Puigdellivol E, Carral ME, Moreno J, Pla-Delfina JM, Jane F. Pharmacokinetics and absolute bioavailability of intramuscular tranexamic acid in man. Int J Clin Pharmacol Ther Toxicol. 1985;23:298–301.

    PubMed  CAS  Google Scholar 

  28. Dowd NP, Karski JM, Cheng DC, Carroll JA, Lin Y, James RL, et al. Pharmacokinetics of tranexamic acid during cardiopulmonary bypass. Anesthesiology. 2002;97:390–9.

    Article  PubMed  CAS  Google Scholar 

  29. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models: I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20:511–28.

    Article  PubMed  CAS  Google Scholar 

  30. Wahlby U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001;28:231–52.

    Article  PubMed  CAS  Google Scholar 

  31. Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59:19–29.

    Article  PubMed  CAS  Google Scholar 

  32. Hill SA. Pharmacokinetics of drug infusions. Contin Educ Anaesth Crit Care Pain. 2004;4(3):76–80.

    Article  Google Scholar 

  33. Roberts I, Kawahara T. Proposal for the inclusion of tranexamic acid (anti‐fibrinolytic – lysine analogue) in the WHO model list of essential medicines. WHO EML – Tranexamic Acid – June 2010. http://www.who.int/selection_medicines/committees/expert/17/application/tranexamic/en/index.html. Accessed 19 Dec 2012.

  34. Andersson L, Nilsoon IM, Colleen S, Granstrand B, Melander B. Role of urokinase and tissue activator in sustaining bleeding and the management thereof with EACA and AMCA. Ann N Y Acad Sci. 1968;146:642–58.

    Article  PubMed  CAS  Google Scholar 

  35. Iribarren JL, Jimenez JJ, Hernandez D, Brouard M, Riverol D, Lorente L, et al. Postoperative bleeding in cardiac surgery: the role of tranexamic acid in patients homozygous for the 5G polymorphism of the plasminogen activator inhibitor-1 gene. Anesthesiology. 2008;108:596–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Goobie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goobie, S.M., Meier, P.M., Sethna, N.F. et al. Population Pharmacokinetics of Tranexamic Acid in Paediatric Patients Undergoing Craniosynostosis Surgery. Clin Pharmacokinet 52, 267–276 (2013). https://doi.org/10.1007/s40262-013-0033-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0033-1

Keywords

Navigation