Skip to main content
Log in

Population Pharmacokinetic Study of Memantine: Effects of Clinical and Genetic Factors

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Memantine, a frequently prescribed anti-dementia drug, is mainly eliminated unchanged by the kidneys, partly via tubular secretion. Considerable inter-individual variability in plasma concentrations has been reported. We aimed to investigate clinical and genetic factors influencing memantine disposition.

Methods

A population pharmacokinetic study was performed including data from 108 patients recruited in a naturalistic setting. Patients were genotyped for common polymorphisms in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1) and nuclear receptors (NR1I2, NR1I3, RXR, PPAR) involved in transporter expression.

Results

The average clearance was 5.2 L/h with a 27 % inter-individual variability (percentage coefficient of variation). Glomerular filtration rate (p = 0.007) and sex (p = 0.001) markedly influenced memantine clearance. NR1I2 rs1523130 was identified as the unique significant genetic covariate for memantine clearance (p = 0.006), with carriers of the NR1I2 rs1523130 CT/TT genotypes presenting a 16 % slower memantine elimination than carriers of the CC genotype.

Conclusion

The better understanding of inter-individual variability of memantine disposition might be beneficial in the context of individual dose optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Herrmann N, Li A, Lanctot K. Memantine in dementia: a review of the current evidence. Expert Opin Pharmacother. 2011;12(5):787–800.

    Article  PubMed  CAS  Google Scholar 

  2. EMEA. EPAR (European public assessment report): Axura. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000378/WC500029678.pdf. Accessed 20 Dec 2011.

  3. EMEA. Memantine scientific discussion. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000378/WC500029674.pdf. Accessed 20 Dec 2011.

  4. Freudenthaler S, Görtelmeyer R, Pantev M, et al. Dose-response analysis to support dosage recommendations for memantine [abstract]. Naunyn Schmiedeberg’s Arch Pharmacol. 1996;353:R606.

    Article  Google Scholar 

  5. Yee SW, Chen L, Giacomini KM. Pharmacogenomics of membrane transporters: past, present and future. Pharmacogenomics. 2010;11(4):475–9.

    Article  PubMed  CAS  Google Scholar 

  6. Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.

    PubMed  CAS  Google Scholar 

  7. Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.

    Article  PubMed  Google Scholar 

  8. Kang HJ, Song IS, Shin HJ, et al. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab Dispos. 2007;35(4):667–75.

    Article  PubMed  CAS  Google Scholar 

  9. Leabman MK, Huang CC, Kawamoto M, et al. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics. 2002;12(5):395–405.

    Article  PubMed  CAS  Google Scholar 

  10. Kerb R, Brinkmann U, Chatskaia N, et al. Identification of genetics variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics. 2002;12:591–5.

    Article  PubMed  CAS  Google Scholar 

  11. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61.

    Article  PubMed  CAS  Google Scholar 

  12. Ha Choi J, Wah Yee S, Kim MJ, et al. Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet Genomics. 2009;19(10):770–80.

    Google Scholar 

  13. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.

    Article  PubMed  CAS  Google Scholar 

  14. Zolk O. Current understanding of the pharmacogenomics of metformin. Clin Pharmacol Ther. 2009;86(6):595–8.

    Article  PubMed  CAS  Google Scholar 

  15. Klaassen CD, Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab. 2005;6(4):309–28.

    Article  PubMed  CAS  Google Scholar 

  16. Le Vee M, Lecureur V, Moreau A, et al. Differential regulation of drug transporter expression by hepatocyte growth factor in primary human hepatocytes. Drug Metab Dispos. 2009;37(11):2228–35.

    Article  PubMed  Google Scholar 

  17. Maeda T, Oyabu M, Yotsumoto T, et al. Effect of pregnane X receptor ligand on pharmacokinetics of substrates of organic cation transporter Oct1 in rats. Drug Metab Dispos. 2007;35(9):1580–6.

    Article  PubMed  CAS  Google Scholar 

  18. D’Argenio G, Petillo O, Margarucci S, et al. Colon OCTN2 gene expression is up-regulated by peroxisome proliferator-activated receptor gamma in humans and mice and contributes to local and systemic carnitine homeostasis. J Biol Chem. 2010;285(35):27078–87.

    Article  PubMed  Google Scholar 

  19. Cho SK, Yoon JS, Lee MG, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89(3):416–21.

    Article  PubMed  CAS  Google Scholar 

  20. Lamba V, Panetta JC, Strom S, et al. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J Pharmacol Exp Ther. 2010;332(3):1088–99.

    Article  PubMed  CAS  Google Scholar 

  21. Klein K, Winter S, Turpeinen M, et al. Pathway-targeted pharmacogenomics of CYP1A2 in human liver. Front Pharmacol. 2010;1:1–20.

    Article  Google Scholar 

  22. Noetzli M, Choong E, Ansermot N, et al. Simultaneous determination of antidementia drugs in human plasma for therapeutic drug monitoring. Ther Drug Monit. 2011;33(2):227–38.

    PubMed  CAS  Google Scholar 

  23. Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.

    Article  PubMed  CAS  Google Scholar 

  24. Shikata E, Yamamoto R, Takane H, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet. 2007;52(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  25. More SS, Li S, Yee SW, et al. Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol Cancer Ther. 2010;9(4):1058–69.

    Article  PubMed  CAS  Google Scholar 

  26. Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117(5):1422–31.

    Article  PubMed  CAS  Google Scholar 

  27. Lubomirov R, di Iulio J, Fayet A, et al. ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics. 2010;20(4):217–30.

    PubMed  CAS  Google Scholar 

  28. Urban TJ, Gallagher RC, Brown C, et al. Functional genetic diversity in the high-affinity carnitine transporter OCTN2 (SLC22A5). Mol Pharmacol. 2006;70(5):1602–11.

    Article  PubMed  CAS  Google Scholar 

  29. Crettol S, Déglon JJ, Besson J, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther. 2006;80(6):668–81.

    Article  PubMed  CAS  Google Scholar 

  30. Beal SL, Sheiner LB, Boeckmann A, et al. NONMEM user’s guides (1989–2009). Ellicot City: Icon Development Solutions; 2009.

    Google Scholar 

  31. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.

    Article  PubMed  Google Scholar 

  32. Stevens LA, Manzi J, Levey AS, et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis. 2007;50(1):21–35.

    Article  PubMed  CAS  Google Scholar 

  33. Arab-Alameddine M, Di Lulio J, Buclin T, et al. Pharmacogenetic-based population Pharmacokinetic analysis of efavirenz in HIV-1 infected individuals. Clin Pharmacol Ther. 2009;85(5):485–94.

    Article  PubMed  CAS  Google Scholar 

  34. FDA. Drug development and drug interactions. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm. Accessed 21 Sep 2012.

  35. PharmGkb. Agonists/ligands of hPXR. http://www.pharmgkb.org/gene/PA378?tabType=tabVip. Accessed 20 Dec 2011.

  36. National Center for Biotechnology Information—dbSNP. http://www.ncbi.nlm.nih.gov/snp. Accessed 20 Dec 2011.

  37. Hiemke C, Baumann P, Bergemann N, et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry. 2011;44(6):195–235.

    Article  Google Scholar 

  38. Kornhuber J, Kennepohl EM, Bleich S, et al. Memantine pharmacotherapy: a naturalistic study using a population pharmacokinetic approach. Clin Pharmacokinet. 2007;46(7):599–612.

    Article  PubMed  CAS  Google Scholar 

  39. Periclou A, Ventura D, Rao N, et al. Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther. 2006;79(1):134–43.

    Article  PubMed  CAS  Google Scholar 

  40. Meetam P, Srimaroeng C, Soodvilai S, et al. Regulatory role of testosterone in organic cation transport: in vivo and in vitro studies. Biol Pharm Bull. 2009;32(6):982–7.

    Article  PubMed  CAS  Google Scholar 

  41. Slitt AL, Cherrington NJ, Hartley DP, et al. Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug Metab Dispos. 2002;30(2):212–9.

    Article  PubMed  CAS  Google Scholar 

  42. Rao N, Chou T, Ventura D, et al. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27(10):1596–606.

    Article  PubMed  CAS  Google Scholar 

  43. Freudenthaler S, Meineke I, Schreeb KH, et al. Influence of urine pH and urinary flow on the renal excretion of memantine. Br J Clin Pharmacol. 1998;46(6):541–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006;234(1):4–33.

    Article  PubMed  CAS  Google Scholar 

  45. Fanta S, Jonsson S, Karlsson MO, et al. Long-term changes in cyclosporine pharmacokinetics after renal transplantation in children: evidence for saturable presystemic metabolism and effect of NR1I2 polymorphism. J Clin Pharmacol. 2010;50(5):581–97.

    Article  PubMed  CAS  Google Scholar 

  46. Op den Buijsch RAM, Cheung CY, De Vries JE, et al. Pregnane X receptor (PXR) polymorphisms involved in the tacrolimus pharmacokinetics. Ther Drug Monit. 2007;29(4):484.

  47. Siccardi M, D’Avolio A, Baietto L, et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C→T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis. 2008;47:1222–5.

    Article  PubMed  CAS  Google Scholar 

  48. Oleson L, von Moltke LL, Greenblatt DJ, et al. Identification of polymorphisms in the 3’-untranslated region of the human pregnane X receptor (PXR) gene associated with variability in cytochrome P450 3A (CYP3A) metabolism. Xenobiotica. 2010;40(2):146–62.

    Article  PubMed  CAS  Google Scholar 

  49. Lamba J, Lamba V, Strom S, et al. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab Dispos. 2008;36(1):169–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Laverrière, Dr F. Sali, Dr G. Schopf, Dr V. Falciola, Dr C. Costa, Dr M. Benouioua, Dr M. Quiroz, Dr P. Roungas and Dr T. Bui for patient enrolment, A. Kottelat, M. Brocard, M. Delessert, N. Cochard, C. Brogli, V. Hodel and A.C. Aubert for sample analyses, K. Powell Golay for editorial assistance and E. Ponce for help with bibliography. We thank the Vital-IT (http://www.vital-it.ch) Center for High-Performance Computing of the Swiss Institute of Bioinformatics for providing the computational resources for the population analyses.

Conflict of interest

The authors declare no conflict of interest.

Funding

This study was supported by internal funds of the Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, University Hospital Lausanne and by a private donation (Irène Allenbach) in support of research on Alzheimer’s disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin B. Eap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noetzli, M., Guidi, M., Ebbing, K. et al. Population Pharmacokinetic Study of Memantine: Effects of Clinical and Genetic Factors. Clin Pharmacokinet 52, 211–223 (2013). https://doi.org/10.1007/s40262-013-0032-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0032-2

Keywords

Navigation