Almquist HJ, Mecchi E, Klose AA. Estimation of the antihaemorrhagic vitamin. Biochem J. 1938;32(11):1897–903.
PubMed
CAS
Google Scholar
Dam H, Schonheyder F. The occurrence and chemical nature of vitamin K. Biochem J. 1936;30(5):897–901.
PubMed
CAS
Google Scholar
Dam H, Schonheyder F, Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J. 1936;30(6):1075–9.
PubMed
CAS
Google Scholar
Link KP. The discovery of dicumarol and its sequels. Circulation. 1959;19(1):97–107.
PubMed
CAS
Article
Google Scholar
Mann FD, Mann JD, Bollman JL. The coagulation defect of vitamin K deficiency compared with that caused by dicumarol. J Lab Clin Med. 1950;36(2):234–7.
PubMed
CAS
Google Scholar
Stehle S, Kirchheiner J, Lazar A, et al. Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Clin Pharmacokinet. 2008;47(9):565–94.
PubMed
CAS
Article
Google Scholar
Rost S, Fregin A, Koch D, et al. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol. 2004;126(4):546–9.
PubMed
CAS
Article
Google Scholar
Sadler JE. Medicine: K is for koagulation. Nature. 2004;427(6974):493–4.
PubMed
CAS
Article
Google Scholar
Breckenridge A, Orme ML. The plasma half lives and the pharmacological effect of the enantiomers of warfarin in rats. Life Sci. 1972;11(7):337–45.
CAS
Article
Google Scholar
Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther. 1976;20(3):342–9.
PubMed
CAS
Google Scholar
Meinertz T, Kasper W, Kahl C, et al. Anticoagulant activity of the enantiomers of acenocoumarol. Br J Clin Pharmacol. 1978;5(2):187–8.
PubMed
CAS
Article
Google Scholar
Schmidt W, Jahnchen E. Stereoselective drug distribution and anticoagulant potency of the enantiomers of phenprocoumon in rats. J Pharm Pharmacol. 1977;29(5):266–71.
PubMed
CAS
Article
Google Scholar
Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227–46.
PubMed
CAS
Article
Google Scholar
Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther. 2001;70(3):292–8.
PubMed
CAS
Article
Google Scholar
de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr. 1990;529(2):479–85.
PubMed
Google Scholar
Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet. 1996;30(6):416–44.
PubMed
CAS
Article
Google Scholar
Greenblatt DJ, von Moltke LL. Interaction of warfarin with drugs, natural substances, and foods. J Clin Pharmacol. 2005;45(2):127–32.
PubMed
CAS
Article
Google Scholar
Hillman MA, Wilke RA, Caldwell MD, et al. Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics. 2004;14(8):539–47.
PubMed
CAS
Article
Google Scholar
Khan T, Wynne H, Wood P, et al. Dietary vitamin K influences intra-individual variability in anticoagulant response to warfarin. Br J Haematol. 2004;124(3):348–54.
PubMed
CAS
Article
Google Scholar
Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol. 2007;63(12):1135–41.
PubMed
CAS
Article
Google Scholar
Momary KM, Shapiro NL, Viana MA, et al. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics. 2007;8(11):1535–44.
PubMed
CAS
Article
Google Scholar
Eriksson BI, Quinlan DJ, Eikelboom JW. Novel oral factor Xa and thrombin inhibitors in the management of thromboembolism. Ann Rev Med. 2011;62:41–57.
PubMed
CAS
Article
Google Scholar
Keeling D, Baglin T, Tait C, et al. Guidelines on oral anticoagulation with warfarin: fourth edition. Br J Haematol. 2011;154(3):311–24.
PubMed
Article
Google Scholar
Bungard TJ, Ghali WA, Teo KK, et al. Why do patients with atrial fibrillation not receive warfarin? Arch Intern Med. 2000;160(1):41–6.
PubMed
CAS
Article
Google Scholar
White HD, Gruber M, Feyzi J, et al. Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control: results from SPORTIF III and V. Arch Intern Med. 2007;167(3):239–45.
PubMed
CAS
Article
Google Scholar
Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor xa inhibitors in development. Clin Pharmacokinet. 2009;48(1):1–22.
PubMed
CAS
Article
Google Scholar
Laux V, Perzborn E, Kubitza D, et al. Preclinical and clinical characteristics of rivaroxaban: a novel, oral, direct factor Xa inhibitor. Semin Thromb Hemost. 2007;33(5):515–23.
PubMed
CAS
Article
Google Scholar
Roehrig S, Straub A, Pohlmann J, et al. Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J Med Chem. 2005;48(19):5900–8.
PubMed
CAS
Article
Google Scholar
Perzborn E, Strassburger J, Wilmen A, et al. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—an oral, direct Factor Xa inhibitor. J Thromb Haemost. 2005;3(3):514–21.
PubMed
CAS
Article
Google Scholar
Perzborn E, Kubitza D, Misselwitz F. Rivaroxaban. A novel, oral, direct factor Xa inhibitor in clinical development for the prevention and treatment of thromboembolic disorders. Hamostaseologie. 2007;27(4):282–9.
PubMed
CAS
Google Scholar
Kubitza D, Becka M, Mueck W, et al. Rivaroxaban (BAY 59-7939)—an oral, direct Factor Xa inhibitor—has no clinically relevant interaction with naproxen. Br J Clin Pharmacol. 2007;63(4):469–76.
PubMed
CAS
Article
Google Scholar
Kubitza D, Becka M, Mueck W, et al. Safety, tolerability, pharmacodynamics, and pharmacokinetics of rivaroxaban—an oral, direct factor Xa inhibitor—are not affected by aspirin. J Clin Pharmacol. 2006;46(9):981–90.
PubMed
CAS
Article
Google Scholar
Kubitza D, Becka M, Mueck W, et al. Co-administration of rivaroxaban—a novel, oral, direct Factor Xa inhibitor—and clopidogrel in healthy subjects [abstract no. P1272]. Eur Heart J. 2007;28(Suppl 1):189.
Google Scholar
Kubitza D, Becka M, Roth A, et al. Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr Med Res Opin. 2008;24(10):2757–65.
PubMed
CAS
Article
Google Scholar
Kubitza D, Becka M, Wensing G, et al. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—an oral, direct Factor Xa inhibitor—after multiple dosing in healthy male subjects. Eur J Clin Pharm. 2005;61(12):873–80.
CAS
Article
Google Scholar
Kubitza D, Becka M, Zuehlsdorf M, et al. Effect of food, an antacid, and the H2 antagonist ranitidine on the absorption of BAY 59-7939 (rivaroxaban), an oral, direct factor Xa inhibitor, in healthy subjects. J Clin Pharmacol. 2006;46(5):549–58.
PubMed
CAS
Article
Google Scholar
Kubitza D, Becka M, Zuehlsdorf M, et al. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J Clin Pharmacol. 2007;47(2):218–26.
PubMed
CAS
Article
Google Scholar
Mueck W, Borris LC, Dahl OE, et al. Population pharmacokinetics and pharmacodynamics of once- and twice-daily rivaroxaban for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb Haemost. 2008;100(3):453–61.
PubMed
CAS
Google Scholar
Mueck W, Lensing AW, Agnelli G, et al. Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet. 2011;50(10):675–86.
PubMed
CAS
Article
Google Scholar
Bayer Pharma AG. Rivaroxaban summary of product characteristics. 2008. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf. Accessed 1 Dec 2012.
Kubitza D, Becka M, Voith B, et al. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78(4):412–21.
PubMed
CAS
Article
Google Scholar
Kubitza D, Becka M, Mueck W, et al. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2010;70(5):703–12.
PubMed
CAS
Article
Google Scholar
Lang D, Freudenberger C, Weinz C. In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans. Drug Metab Dispos. 2009;37(5):1046–55.
PubMed
CAS
Article
Google Scholar
Gross PL, Weitz JI. New anticoagulants for treatment of venous thromboembolism. Arterioscler Thromb Vasc Biol. 2008;28(3):380–6.
PubMed
CAS
Article
Google Scholar
Kubitza D, Becka M, Mueck W, et al. The effect of extreme age, and gender on the pharmacology and tolerability of rivaroxaban: an oral, direct factor Xa inhibitor. Blood. 2006;108(11):271–2.
Google Scholar
Halabi A, Kubitza D, Zuehlsdorf M, et al. Effect of hepatic impairment on the pharmacokinetics, pharmacodynamics and tolerability of rivaroxaban: an oral, direct factor Xa inhibitor [abstract no. P-M-635]. J Thromb Haemost 2007 5(Suppl 2).
Gnoth MJ, Buetehorn U, Muenster U, et al. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.
PubMed
CAS
Article
Google Scholar
Mueck W, Becka M, Kubitza D, et al. Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor xa inhibitor—in healthy subjects. Int J Clin Pharmacol Ther. 2007;45(6):335–44.
PubMed
CAS
Google Scholar
Mueck W, Eriksson BI, Bauer KA, et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor Xa inhibitor—in patients undergoing major orthopaedic surgery. Clin Pharmacokinet. 2008;47(3):203–16.
PubMed
CAS
Article
Google Scholar
Agnelli G, Gallus A, Goldhaber SZ, et al. Treatment of proximal deep-vein thrombosis with the oral direct factor Xa inhibitor rivaroxaban (BAY 59-7939): the ODIXa-DVT (Oral Direct Factor Xa Inhibitor BAY 59-7939 in patients with acute symptomatic deep-vein thrombosis) study. Circulation. 2007;116(2):180–7.
PubMed
CAS
Article
Google Scholar
Wong PC, Pinto DJ, Zhang D. Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J Thromb Thrombolysis. 2011;31(4):478–92.
PubMed
CAS
Article
Google Scholar
Pinto DJ, Orwat MJ, Koch S, et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2007;50(22):5339–56.
PubMed
CAS
Article
Google Scholar
Wong PC, Jiang X. Apixaban, a direct factor Xa inhibitor, inhibits tissue-factor induced human platelet aggregation in vitro: comparison with direct inhibitors of factor VIIa, XIa and thrombin. Thromb Haemost. 2010;104(2):302–10.
PubMed
CAS
Article
Google Scholar
He K, Luettgen JM, Zhang D, et al. Preclinical pharmacokinetics and pharmacodynamics of apixaban, a potent and selective factor Xa inhibitor. Eur J Drug Metab Pharm. 2011;36(3):129–39.
CAS
Article
Google Scholar
Wong PC, Crain EJ, Xin B, et al. Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J Thromb Haemost. 2008;6(5):820–9.
PubMed
CAS
Article
Google Scholar
Barrett YC, Wang Z, Frost C, et al. Clinical laboratory measurement of direct factor Xa inhibitors: anti-Xa assay is preferable to prothrombin time assay. Thromb Haemost. 2010;104(6):1263–71.
PubMed
CAS
Article
Google Scholar
Wong PC, Watson CA, Crain EJ. Arterial antithrombotic and bleeding time effects of apixaban, a direct factor Xa inhibitor, in combination with antiplatelet therapy in rabbits. J Thromb Haemost. 2008;6(10):1736–41.
PubMed
CAS
Article
Google Scholar
Wong P, Watson C, Knabb R, Crain E. The combination of apixaban, a direct factor Xa inhibitor, with heparin or enoxaparin in rabbits elicits additive antithrombotic effects, with low bleeding [abstract no. 933]. Annual Congress of the European Society of Cardiology (ESC) Munich; 30 Aug–3 Sep 2008.
Raghavan N, Frost CE, Yu Z, et al. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos. 2009;37(1):74–81.
PubMed
CAS
Article
Google Scholar
Frost CE, Nepal S, Barrett Y, et al. Effects of age and gender on the single-dose pharmacokinetics (PK) and pharmacodynamics (PD) of apixaban [abstract no. PP-MO-407]. J Thromb Haemost. 2009;7(Suppl 2):455.
Google Scholar
Prom R, Spinler SA. The role of apixaban for venous and arterial thromboembolic disease. Ann Pharmacother. 2011;45(10):1262–83.
PubMed
CAS
Article
Google Scholar
Song Y, Cui Y, Li T, et al. Apixaban pharmacokinetics and pharmacodynamics in healthy Chinese subjects [abstract no. 22]. J Clin Pharmacol. 2010;50:1062.
Google Scholar
Upreti VV, Wang J, Barrett YC, et al. Effect of body weight on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor, in healthy subjects [abstract no. 16]. J Clin Pharmacol. 2010;50:1060.
Google Scholar
BMS/Pfizer. Eliquis (apixaban) summary of product characteristics. 2011. http://www.eliquis.com/PDF/ELIQUIS%20%C2%AE%20(apixaban)%20SmPC.pdf. Accessed 1 Dec 2012.
Wang L, Zhang D, Raghavan N, et al. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos. 2010;38(3):448–58.
PubMed
CAS
Article
Google Scholar
Frost C, Wang J, Nepal S, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor [abstract no. 139]. J Clin Pharmacol. 2009;49:1123.
Google Scholar
Vakkalagadda B, Frost C, Wang J, et al. Effect of rifampin on the pharmacokinetics of apixaban, an oral direct inhibitor of factor Xa [abstract no. 143]. J Clin Pharmacol. 2009;49:1124.
Google Scholar
European Medicines Agency Press Office. AstraZeneca withdraws its application for Ximelagatran 36-mg film-coated tablets. 2006. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/02/WC500074073.pdf. Accessed 1 Dec 2012.
Eisert WG, Hauel N, Stangier J, et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler Thromb Vasc Biol. 2010;30(10):1885–9.
PubMed
CAS
Article
Google Scholar
Hankey GJ, Eikelboom JW. Dabigatran etexilate: a new oral thrombin inhibitor. Circulation. 2011;123(13):1436–50.
PubMed
Article
Google Scholar
Huntington JA, Baglin TP. Targeting thrombin: rational drug design from natural mechanisms. Trends Pharmacol Sci. 2003;24(11):589–95.
PubMed
CAS
Article
Google Scholar
van Ryn J, Hauel N, Waldman L, et al. Dabigatran inhibits both clot-bound and fluid-phase thrombin in vitro: comparison to heparin and hirudin [abstract no. 570]. Arterioscler Thromb Vasc Biol. 2008;28:e136–7.
Google Scholar
Weitz JI, Hudoba M, Massel D, et al. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest. 1990;86(2):385–91.
PubMed
CAS
Article
Google Scholar
Maegdefessel L, Linde T, Krapiec F, et al. In vitro comparison of dabigatran, unfractionated heparin, and low-molecular-weight heparin in preventing thrombus formation on mechanical heart valves. Thromb Res. 2010;126(3):e196–200.
PubMed
CAS
Article
Google Scholar
Wienen W, Stassen JM, Priepke H, et al. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb Haemost. 2007;98(1):155–62.
PubMed
CAS
Google Scholar
Markwardt F. Hirudin as alternative anticoagulant: a historical review. Semin Thromb Hemost. 2002;28(5):405–14.
PubMed
CAS
Article
Google Scholar
Wienen W, Stassen JM, Priepke H, et al. Effects of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate, on thrombus formation and bleeding time in rats. Thromb Haemost. 2007;98(2):333–8.
PubMed
CAS
Google Scholar
Wienen W, Stassen JM, Priepke H, et al. Antithrombotic and anticoagulant effects of the direct thrombin inhibitor dabigatran, and its oral prodrug, dabigatran etexilate, in a rabbit model of venous thrombosis. J Thromb Haemost. 2007;5(6):1237–42.
PubMed
CAS
Article
Google Scholar
Stangier J, Rathgen K, Stahle H, et al. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol. 2007;64(3):292–303.
PubMed
CAS
Article
Google Scholar
Troconiz IF, Tillmann C, Liesenfeld KH, et al. Population pharmacokinetic analysis of the new oral thrombin inhibitor dabigatran etexilate (BIBR 1048) in patients undergoing primary elective total hip replacement surgery. J Clin Pharmacol. 2007;47(3):371–82.
PubMed
CAS
Article
Google Scholar
Stangier J, Stahle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet. 2008;47(1):47–59.
PubMed
CAS
Article
Google Scholar
van Ryn J, Stangier J, Haertter S, et al. Dabigatran etexilate—a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103(6):1116–27.
PubMed
Article
Google Scholar
Ebner T, Wagner K, Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. Drug Metab Dispos. 2010;38(9):1567–75.
PubMed
CAS
Article
Google Scholar
Stangier J, Stahle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J Clin Pharmacol. 2008;48(12):1411–9.
PubMed
CAS
Article
Google Scholar
Stangier J, Rathgen K, Stahle H, et al. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin Pharmacokinet. 2010;49(4):259–68.
PubMed
CAS
Article
Google Scholar
Stangier J, Eriksson BI, Dahl OE, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol. 2005;45(5):555–63.
PubMed
CAS
Article
Google Scholar
Stangier J, Rathgen K, Stahle H, et al. Coadministration of dabigatran etexilate and atorvastatin: assessment of potential impact on pharmacokinetics and pharmacodynamics. Am J Cardiovasc Drugs. 2009;9(1):59–68.
PubMed
CAS
Article
Google Scholar
Clemens A, Haertter S, Friedman J, et al. Twice daily dosing of dabigatran for stroke prevention in atrial fibrillation: a pharmacokinetic justification. Curr Med Res Opin. 2012;28(2):195–201.
PubMed
CAS
Article
Google Scholar
Boehringer Ingelheim International GmbH. Pradaxa (dabigatran etexilate) summary of product characteristics. 2008. http://www.eliquis.com/PDF/ELIQUIS%20%C2%AE%20(apixaban)%20SmPC.pdf. Accessed 1 Dec 2012.
Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.
PubMed
CAS
Article
Google Scholar
Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.
PubMed
CAS
Article
Google Scholar
Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.
PubMed
CAS
Article
Google Scholar
Connolly SJ, Ezekowitz MD, Yusuf S, et al. Newly identified events in the RE-LY trial. N Engl J Med. 2010;363(19):1875–6.
PubMed
CAS
Article
Google Scholar
Eikelboom JW, Weitz JI. New anticoagulants. Circulation. 2010;121(13):1523–32.
PubMed
Article
Google Scholar
Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124(14):1573–9.
PubMed
CAS
Article
Google Scholar
Bounameaux H, Reber G. New oral antithrombotics: a need for laboratory monitoring. Against [comment]. J Thromb Haemost. 2010;8(4):627–30.
PubMed
CAS
Article
Google Scholar
Weitz JI. New oral anticoagulants in development. Thromb Haemost. 2010;103(1):62–70.
PubMed
CAS
Article
Google Scholar
McKeage K. Dabigatran etexilate: a pharmacoeconomic review of its use in the prevention of stroke and systemic embolism in patients with atrial fibrillation. Pharmacoeconomics. 2012;30(9):841–55.
PubMed
Article
Google Scholar
Davidson T, Husberg M, Janzon M, Oldgren J, Levin LA. Cost-effectiveness of dabigatran compared with warfarin for patients with atrial fibrillation in Sweden. Eur Heart J. 2012 [epub ahead of print].
Kamel H, Easton JD, Johnston SC, Kim AS. Cost-effectiveness of apixaban vs warfarin for secondary stroke prevention in atrial fibrillation. Neurology. 2012;79(14):1428–34.
PubMed
Article
Google Scholar
Lee S, Mullin R, Blazawski J, Coleman CI. Cost-effectiveness of apixaban compared with warfarin for stroke prevention in atrial fibrillation. PLoS One. 2012;7(10):e47473.
PubMed
CAS
Article
Google Scholar
Hauel NH, Nar H, Priepke H, et al. Structure-based design of novel potent nonpeptide thrombin inhibitors. J Med Chem. 2002;45(9):1757–66.
PubMed
CAS
Article
Google Scholar