Skip to main content
Log in

New Oral Anticoagulants: Comparative Pharmacology with Vitamin K Antagonists

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

New oral anticoagulants (OACs) that directly inhibit Factor Xa (FXa) or thrombin have been developed for the long-term prevention of thromboembolic disorders. These novel agents provide numerous benefits over older vitamin K antagonists (VKAs) due to major pharmacological differences. VKAs are economical and very well characterized, but have important limitations that can outweigh these advantages, such as slow onset of action, narrow therapeutic window and unpredictable anticoagulant effect. VKA-associated dietary precautions, monitoring and dosing adjustments to maintain international normalized ratio (INR) within therapeutic range, and bridging therapy, are inconvenient for patients, expensive, and may result in inappropriate use of VKA therapy. This may lead to increased bleeding risk or reduced anticoagulation and increased risk of thrombotic events. The new OACs have rapid onset of action, low potential for food and drug interactions, and predictable anticoagulant effect that removes the need for routine monitoring. FXa inhibitors, e.g. rivaroxaban and apixaban, are potent, oral direct inhibitors of prothrombinase-bound, clot-associated or free FXa. Both agents have a rapid onset of action, a wide therapeutic window, little or no interaction with food and other drugs, minimal inter-patient variability, and display similar pharmacokinetics in different patient populations. Since both are substrates, co-administration of rivaroxaban and apixaban with strong cytochrome P450 (CYP) 3A4 and permeability glycoprotein (P-gp) inhibitors and inducers can result in substantial changes in plasma concentrations due to altered clearance rates; consequently, their concomitant use is contraindicated and caution is required when used concomitantly with strong CYP3A4 and P-gp inducers. Although parenteral oral direct thrombin inhibitors (DTIs), such as argatroban and bivalirudin, have been on the market for years, DTIs such as dabigatran are novel synthetic thrombin antagonists. Dabigatran etexilate is a low-molecular-weight non-active pro-drug that is administered orally and converted rapidly to its active form, dabigatran—a potent, competitive and reversible DTI. Dabigatran has an advantage over the indirect thrombin inhibitors, unfractionated heparin and low-molecular-weight heparin, in that it inhibits free and fibrin-bound thrombin. The reversible binding of dabigatran may provide safer and more predictable anticoagulant treatment than seen with irreversible, non-covalent thrombin inhibitors, e.g. hirudin. Dabigatran shows a very low potential for drug–drug interactions. However, co-administration of dabigatran etexilate with other anticoagulants and antiplatelet agents can increase the bleeding risk. Although the new agents are pharmacologically better than VKAs—particularly in terms of fixed dosing, rapid onset of action, no INR monitoring and lower risk of drug interactions—there are some differences between them: the bioavailability of dabigatran is lower than rivaroxaban and apixaban, and so the dabigatran dosage required is higher; lower protein binding of dabigatran reduces the variability related to albuminaemia. The risk of metabolic drug–drug interactions also appears to differ between OACs: VKAs > rivaroxaban > apixaban > dabigatran. The convenience of the new OACs has translated into improvements in efficacy and safety as shown in phase III randomized trials. The new anticoagulants so far offer the greatest promise and opportunity for the replacement of VKAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almquist HJ, Mecchi E, Klose AA. Estimation of the antihaemorrhagic vitamin. Biochem J. 1938;32(11):1897–903.

    PubMed  CAS  Google Scholar 

  2. Dam H, Schonheyder F. The occurrence and chemical nature of vitamin K. Biochem J. 1936;30(5):897–901.

    PubMed  CAS  Google Scholar 

  3. Dam H, Schonheyder F, Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J. 1936;30(6):1075–9.

    PubMed  CAS  Google Scholar 

  4. Link KP. The discovery of dicumarol and its sequels. Circulation. 1959;19(1):97–107.

    Article  PubMed  CAS  Google Scholar 

  5. Mann FD, Mann JD, Bollman JL. The coagulation defect of vitamin K deficiency compared with that caused by dicumarol. J Lab Clin Med. 1950;36(2):234–7.

    PubMed  CAS  Google Scholar 

  6. Stehle S, Kirchheiner J, Lazar A, et al. Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Clin Pharmacokinet. 2008;47(9):565–94.

    Article  PubMed  CAS  Google Scholar 

  7. Rost S, Fregin A, Koch D, et al. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol. 2004;126(4):546–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sadler JE. Medicine: K is for koagulation. Nature. 2004;427(6974):493–4.

    Article  PubMed  CAS  Google Scholar 

  9. Breckenridge A, Orme ML. The plasma half lives and the pharmacological effect of the enantiomers of warfarin in rats. Life Sci. 1972;11(7):337–45.

    Article  CAS  Google Scholar 

  10. Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther. 1976;20(3):342–9.

    PubMed  CAS  Google Scholar 

  11. Meinertz T, Kasper W, Kahl C, et al. Anticoagulant activity of the enantiomers of acenocoumarol. Br J Clin Pharmacol. 1978;5(2):187–8.

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt W, Jahnchen E. Stereoselective drug distribution and anticoagulant potency of the enantiomers of phenprocoumon in rats. J Pharm Pharmacol. 1977;29(5):266–71.

    Article  PubMed  CAS  Google Scholar 

  13. Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227–46.

    Article  PubMed  CAS  Google Scholar 

  14. Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther. 2001;70(3):292–8.

    Article  PubMed  CAS  Google Scholar 

  15. de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr. 1990;529(2):479–85.

    PubMed  Google Scholar 

  16. Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet. 1996;30(6):416–44.

    Article  PubMed  CAS  Google Scholar 

  17. Greenblatt DJ, von Moltke LL. Interaction of warfarin with drugs, natural substances, and foods. J Clin Pharmacol. 2005;45(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  18. Hillman MA, Wilke RA, Caldwell MD, et al. Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics. 2004;14(8):539–47.

    Article  PubMed  CAS  Google Scholar 

  19. Khan T, Wynne H, Wood P, et al. Dietary vitamin K influences intra-individual variability in anticoagulant response to warfarin. Br J Haematol. 2004;124(3):348–54.

    Article  PubMed  CAS  Google Scholar 

  20. Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol. 2007;63(12):1135–41.

    Article  PubMed  CAS  Google Scholar 

  21. Momary KM, Shapiro NL, Viana MA, et al. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics. 2007;8(11):1535–44.

    Article  PubMed  CAS  Google Scholar 

  22. Eriksson BI, Quinlan DJ, Eikelboom JW. Novel oral factor Xa and thrombin inhibitors in the management of thromboembolism. Ann Rev Med. 2011;62:41–57.

    Article  PubMed  CAS  Google Scholar 

  23. Keeling D, Baglin T, Tait C, et al. Guidelines on oral anticoagulation with warfarin: fourth edition. Br J Haematol. 2011;154(3):311–24.

    Article  PubMed  Google Scholar 

  24. Bungard TJ, Ghali WA, Teo KK, et al. Why do patients with atrial fibrillation not receive warfarin? Arch Intern Med. 2000;160(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  25. White HD, Gruber M, Feyzi J, et al. Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control: results from SPORTIF III and V. Arch Intern Med. 2007;167(3):239–45.

    Article  PubMed  CAS  Google Scholar 

  26. Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor xa inhibitors in development. Clin Pharmacokinet. 2009;48(1):1–22.

    Article  PubMed  CAS  Google Scholar 

  27. Laux V, Perzborn E, Kubitza D, et al. Preclinical and clinical characteristics of rivaroxaban: a novel, oral, direct factor Xa inhibitor. Semin Thromb Hemost. 2007;33(5):515–23.

    Article  PubMed  CAS  Google Scholar 

  28. Roehrig S, Straub A, Pohlmann J, et al. Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J Med Chem. 2005;48(19):5900–8.

    Article  PubMed  CAS  Google Scholar 

  29. Perzborn E, Strassburger J, Wilmen A, et al. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—an oral, direct Factor Xa inhibitor. J Thromb Haemost. 2005;3(3):514–21.

    Article  PubMed  CAS  Google Scholar 

  30. Perzborn E, Kubitza D, Misselwitz F. Rivaroxaban. A novel, oral, direct factor Xa inhibitor in clinical development for the prevention and treatment of thromboembolic disorders. Hamostaseologie. 2007;27(4):282–9.

    PubMed  CAS  Google Scholar 

  31. Kubitza D, Becka M, Mueck W, et al. Rivaroxaban (BAY 59-7939)—an oral, direct Factor Xa inhibitor—has no clinically relevant interaction with naproxen. Br J Clin Pharmacol. 2007;63(4):469–76.

    Article  PubMed  CAS  Google Scholar 

  32. Kubitza D, Becka M, Mueck W, et al. Safety, tolerability, pharmacodynamics, and pharmacokinetics of rivaroxaban—an oral, direct factor Xa inhibitor—are not affected by aspirin. J Clin Pharmacol. 2006;46(9):981–90.

    Article  PubMed  CAS  Google Scholar 

  33. Kubitza D, Becka M, Mueck W, et al. Co-administration of rivaroxaban—a novel, oral, direct Factor Xa inhibitor—and clopidogrel in healthy subjects [abstract no. P1272]. Eur Heart J. 2007;28(Suppl 1):189.

    Google Scholar 

  34. Kubitza D, Becka M, Roth A, et al. Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr Med Res Opin. 2008;24(10):2757–65.

    Article  PubMed  CAS  Google Scholar 

  35. Kubitza D, Becka M, Wensing G, et al. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—an oral, direct Factor Xa inhibitor—after multiple dosing in healthy male subjects. Eur J Clin Pharm. 2005;61(12):873–80.

    Article  CAS  Google Scholar 

  36. Kubitza D, Becka M, Zuehlsdorf M, et al. Effect of food, an antacid, and the H2 antagonist ranitidine on the absorption of BAY 59-7939 (rivaroxaban), an oral, direct factor Xa inhibitor, in healthy subjects. J Clin Pharmacol. 2006;46(5):549–58.

    Article  PubMed  CAS  Google Scholar 

  37. Kubitza D, Becka M, Zuehlsdorf M, et al. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J Clin Pharmacol. 2007;47(2):218–26.

    Article  PubMed  CAS  Google Scholar 

  38. Mueck W, Borris LC, Dahl OE, et al. Population pharmacokinetics and pharmacodynamics of once- and twice-daily rivaroxaban for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb Haemost. 2008;100(3):453–61.

    PubMed  CAS  Google Scholar 

  39. Mueck W, Lensing AW, Agnelli G, et al. Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet. 2011;50(10):675–86.

    Article  PubMed  CAS  Google Scholar 

  40. Bayer Pharma AG. Rivaroxaban summary of product characteristics. 2008. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf. Accessed 1 Dec 2012.

  41. Kubitza D, Becka M, Voith B, et al. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78(4):412–21.

    Article  PubMed  CAS  Google Scholar 

  42. Kubitza D, Becka M, Mueck W, et al. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2010;70(5):703–12.

    Article  PubMed  CAS  Google Scholar 

  43. Lang D, Freudenberger C, Weinz C. In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans. Drug Metab Dispos. 2009;37(5):1046–55.

    Article  PubMed  CAS  Google Scholar 

  44. Gross PL, Weitz JI. New anticoagulants for treatment of venous thromboembolism. Arterioscler Thromb Vasc Biol. 2008;28(3):380–6.

    Article  PubMed  CAS  Google Scholar 

  45. Kubitza D, Becka M, Mueck W, et al. The effect of extreme age, and gender on the pharmacology and tolerability of rivaroxaban: an oral, direct factor Xa inhibitor. Blood. 2006;108(11):271–2.

    Google Scholar 

  46. Halabi A, Kubitza D, Zuehlsdorf M, et al. Effect of hepatic impairment on the pharmacokinetics, pharmacodynamics and tolerability of rivaroxaban: an oral, direct factor Xa inhibitor [abstract no. P-M-635]. J Thromb Haemost 2007 5(Suppl 2).

  47. Gnoth MJ, Buetehorn U, Muenster U, et al. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.

    Article  PubMed  CAS  Google Scholar 

  48. Mueck W, Becka M, Kubitza D, et al. Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor xa inhibitor—in healthy subjects. Int J Clin Pharmacol Ther. 2007;45(6):335–44.

    PubMed  CAS  Google Scholar 

  49. Mueck W, Eriksson BI, Bauer KA, et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor Xa inhibitor—in patients undergoing major orthopaedic surgery. Clin Pharmacokinet. 2008;47(3):203–16.

    Article  PubMed  CAS  Google Scholar 

  50. Agnelli G, Gallus A, Goldhaber SZ, et al. Treatment of proximal deep-vein thrombosis with the oral direct factor Xa inhibitor rivaroxaban (BAY 59-7939): the ODIXa-DVT (Oral Direct Factor Xa Inhibitor BAY 59-7939 in patients with acute symptomatic deep-vein thrombosis) study. Circulation. 2007;116(2):180–7.

    Article  PubMed  CAS  Google Scholar 

  51. Wong PC, Pinto DJ, Zhang D. Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J Thromb Thrombolysis. 2011;31(4):478–92.

    Article  PubMed  CAS  Google Scholar 

  52. Pinto DJ, Orwat MJ, Koch S, et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2007;50(22):5339–56.

    Article  PubMed  CAS  Google Scholar 

  53. Wong PC, Jiang X. Apixaban, a direct factor Xa inhibitor, inhibits tissue-factor induced human platelet aggregation in vitro: comparison with direct inhibitors of factor VIIa, XIa and thrombin. Thromb Haemost. 2010;104(2):302–10.

    Article  PubMed  CAS  Google Scholar 

  54. He K, Luettgen JM, Zhang D, et al. Preclinical pharmacokinetics and pharmacodynamics of apixaban, a potent and selective factor Xa inhibitor. Eur J Drug Metab Pharm. 2011;36(3):129–39.

    Article  CAS  Google Scholar 

  55. Wong PC, Crain EJ, Xin B, et al. Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J Thromb Haemost. 2008;6(5):820–9.

    Article  PubMed  CAS  Google Scholar 

  56. Barrett YC, Wang Z, Frost C, et al. Clinical laboratory measurement of direct factor Xa inhibitors: anti-Xa assay is preferable to prothrombin time assay. Thromb Haemost. 2010;104(6):1263–71.

    Article  PubMed  CAS  Google Scholar 

  57. Wong PC, Watson CA, Crain EJ. Arterial antithrombotic and bleeding time effects of apixaban, a direct factor Xa inhibitor, in combination with antiplatelet therapy in rabbits. J Thromb Haemost. 2008;6(10):1736–41.

    Article  PubMed  CAS  Google Scholar 

  58. Wong P, Watson C, Knabb R, Crain E. The combination of apixaban, a direct factor Xa inhibitor, with heparin or enoxaparin in rabbits elicits additive antithrombotic effects, with low bleeding [abstract no. 933]. Annual Congress of the European Society of Cardiology (ESC) Munich; 30 Aug–3 Sep 2008.

  59. Raghavan N, Frost CE, Yu Z, et al. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos. 2009;37(1):74–81.

    Article  PubMed  CAS  Google Scholar 

  60. Frost CE, Nepal S, Barrett Y, et al. Effects of age and gender on the single-dose pharmacokinetics (PK) and pharmacodynamics (PD) of apixaban [abstract no. PP-MO-407]. J Thromb Haemost. 2009;7(Suppl 2):455.

    Google Scholar 

  61. Prom R, Spinler SA. The role of apixaban for venous and arterial thromboembolic disease. Ann Pharmacother. 2011;45(10):1262–83.

    Article  PubMed  CAS  Google Scholar 

  62. Song Y, Cui Y, Li T, et al. Apixaban pharmacokinetics and pharmacodynamics in healthy Chinese subjects [abstract no. 22]. J Clin Pharmacol. 2010;50:1062.

    Google Scholar 

  63. Upreti VV, Wang J, Barrett YC, et al. Effect of body weight on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor, in healthy subjects [abstract no. 16]. J Clin Pharmacol. 2010;50:1060.

    Google Scholar 

  64. BMS/Pfizer. Eliquis (apixaban) summary of product characteristics. 2011. http://www.eliquis.com/PDF/ELIQUIS%20%C2%AE%20(apixaban)%20SmPC.pdf. Accessed 1 Dec 2012.

  65. Wang L, Zhang D, Raghavan N, et al. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos. 2010;38(3):448–58.

    Article  PubMed  CAS  Google Scholar 

  66. Frost C, Wang J, Nepal S, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor [abstract no. 139]. J Clin Pharmacol. 2009;49:1123.

    Google Scholar 

  67. Vakkalagadda B, Frost C, Wang J, et al. Effect of rifampin on the pharmacokinetics of apixaban, an oral direct inhibitor of factor Xa [abstract no. 143]. J Clin Pharmacol. 2009;49:1124.

    Google Scholar 

  68. European Medicines Agency Press Office. AstraZeneca withdraws its application for Ximelagatran 36-mg film-coated tablets. 2006. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/02/WC500074073.pdf. Accessed 1 Dec 2012.

  69. Eisert WG, Hauel N, Stangier J, et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler Thromb Vasc Biol. 2010;30(10):1885–9.

    Article  PubMed  CAS  Google Scholar 

  70. Hankey GJ, Eikelboom JW. Dabigatran etexilate: a new oral thrombin inhibitor. Circulation. 2011;123(13):1436–50.

    Article  PubMed  Google Scholar 

  71. Huntington JA, Baglin TP. Targeting thrombin: rational drug design from natural mechanisms. Trends Pharmacol Sci. 2003;24(11):589–95.

    Article  PubMed  CAS  Google Scholar 

  72. van Ryn J, Hauel N, Waldman L, et al. Dabigatran inhibits both clot-bound and fluid-phase thrombin in vitro: comparison to heparin and hirudin [abstract no. 570]. Arterioscler Thromb Vasc Biol. 2008;28:e136–7.

    Google Scholar 

  73. Weitz JI, Hudoba M, Massel D, et al. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest. 1990;86(2):385–91.

    Article  PubMed  CAS  Google Scholar 

  74. Maegdefessel L, Linde T, Krapiec F, et al. In vitro comparison of dabigatran, unfractionated heparin, and low-molecular-weight heparin in preventing thrombus formation on mechanical heart valves. Thromb Res. 2010;126(3):e196–200.

    Article  PubMed  CAS  Google Scholar 

  75. Wienen W, Stassen JM, Priepke H, et al. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb Haemost. 2007;98(1):155–62.

    PubMed  CAS  Google Scholar 

  76. Markwardt F. Hirudin as alternative anticoagulant: a historical review. Semin Thromb Hemost. 2002;28(5):405–14.

    Article  PubMed  CAS  Google Scholar 

  77. Wienen W, Stassen JM, Priepke H, et al. Effects of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate, on thrombus formation and bleeding time in rats. Thromb Haemost. 2007;98(2):333–8.

    PubMed  CAS  Google Scholar 

  78. Wienen W, Stassen JM, Priepke H, et al. Antithrombotic and anticoagulant effects of the direct thrombin inhibitor dabigatran, and its oral prodrug, dabigatran etexilate, in a rabbit model of venous thrombosis. J Thromb Haemost. 2007;5(6):1237–42.

    Article  PubMed  CAS  Google Scholar 

  79. Stangier J, Rathgen K, Stahle H, et al. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol. 2007;64(3):292–303.

    Article  PubMed  CAS  Google Scholar 

  80. Troconiz IF, Tillmann C, Liesenfeld KH, et al. Population pharmacokinetic analysis of the new oral thrombin inhibitor dabigatran etexilate (BIBR 1048) in patients undergoing primary elective total hip replacement surgery. J Clin Pharmacol. 2007;47(3):371–82.

    Article  PubMed  CAS  Google Scholar 

  81. Stangier J, Stahle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet. 2008;47(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  82. van Ryn J, Stangier J, Haertter S, et al. Dabigatran etexilate—a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103(6):1116–27.

    Article  PubMed  Google Scholar 

  83. Ebner T, Wagner K, Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. Drug Metab Dispos. 2010;38(9):1567–75.

    Article  PubMed  CAS  Google Scholar 

  84. Stangier J, Stahle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J Clin Pharmacol. 2008;48(12):1411–9.

    Article  PubMed  CAS  Google Scholar 

  85. Stangier J, Rathgen K, Stahle H, et al. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin Pharmacokinet. 2010;49(4):259–68.

    Article  PubMed  CAS  Google Scholar 

  86. Stangier J, Eriksson BI, Dahl OE, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol. 2005;45(5):555–63.

    Article  PubMed  CAS  Google Scholar 

  87. Stangier J, Rathgen K, Stahle H, et al. Coadministration of dabigatran etexilate and atorvastatin: assessment of potential impact on pharmacokinetics and pharmacodynamics. Am J Cardiovasc Drugs. 2009;9(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  88. Clemens A, Haertter S, Friedman J, et al. Twice daily dosing of dabigatran for stroke prevention in atrial fibrillation: a pharmacokinetic justification. Curr Med Res Opin. 2012;28(2):195–201.

    Article  PubMed  CAS  Google Scholar 

  89. Boehringer Ingelheim International GmbH. Pradaxa (dabigatran etexilate) summary of product characteristics. 2008. http://www.eliquis.com/PDF/ELIQUIS%20%C2%AE%20(apixaban)%20SmPC.pdf. Accessed 1 Dec 2012.

  90. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  PubMed  CAS  Google Scholar 

  91. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    Article  PubMed  CAS  Google Scholar 

  92. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  PubMed  CAS  Google Scholar 

  93. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Newly identified events in the RE-LY trial. N Engl J Med. 2010;363(19):1875–6.

    Article  PubMed  CAS  Google Scholar 

  94. Eikelboom JW, Weitz JI. New anticoagulants. Circulation. 2010;121(13):1523–32.

    Article  PubMed  Google Scholar 

  95. Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124(14):1573–9.

    Article  PubMed  CAS  Google Scholar 

  96. Bounameaux H, Reber G. New oral antithrombotics: a need for laboratory monitoring. Against [comment]. J Thromb Haemost. 2010;8(4):627–30.

    Article  PubMed  CAS  Google Scholar 

  97. Weitz JI. New oral anticoagulants in development. Thromb Haemost. 2010;103(1):62–70.

    Article  PubMed  CAS  Google Scholar 

  98. McKeage K. Dabigatran etexilate: a pharmacoeconomic review of its use in the prevention of stroke and systemic embolism in patients with atrial fibrillation. Pharmacoeconomics. 2012;30(9):841–55.

    Article  PubMed  Google Scholar 

  99. Davidson T, Husberg M, Janzon M, Oldgren J, Levin LA. Cost-effectiveness of dabigatran compared with warfarin for patients with atrial fibrillation in Sweden. Eur Heart J. 2012 [epub ahead of print].

  100. Kamel H, Easton JD, Johnston SC, Kim AS. Cost-effectiveness of apixaban vs warfarin for secondary stroke prevention in atrial fibrillation. Neurology. 2012;79(14):1428–34.

    Article  PubMed  Google Scholar 

  101. Lee S, Mullin R, Blazawski J, Coleman CI. Cost-effectiveness of apixaban compared with warfarin for stroke prevention in atrial fibrillation. PLoS One. 2012;7(10):e47473.

    Article  PubMed  CAS  Google Scholar 

  102. Hauel NH, Nar H, Priepke H, et al. Structure-based design of novel potent nonpeptide thrombin inhibitors. J Med Chem. 2002;45(9):1757–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The author declares that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Scaglione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaglione, F. New Oral Anticoagulants: Comparative Pharmacology with Vitamin K Antagonists. Clin Pharmacokinet 52, 69–82 (2013). https://doi.org/10.1007/s40262-012-0030-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0030-9

Keywords

Navigation