Skip to main content
Log in

A Placebo-Controlled, Multiple Ascending Dose Study to Evaluate the Safety, Pharmacokinetics and Pharmacodynamics of Avagacestat (BMS-708163) in Healthy Young and Elderly Subjects

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Avagacestat is an orally active γ-secretase inhibitor that selectively inhibits amyloid β (Aβ) synthesis in cell culture and animal models. The objective of the current study was to assess the pharmacokinetics, pharmacodynamics, safety and tolerability of multiple doses of avagacestat over 28 days in healthy young men and elderly men and women in a placebo-controlled, sequential-panel, ascending multiple-dose study.

Methods

Thirty-three young men were assigned to four serial dose groups of avagacestat 15, 50, 100 or 150 mg (n = 6–7 per dose), or placebo (n = 2 per dose panel; 8 subjects total) once daily for 28 days. Elderly men and women were assigned to serial dose groups of avagacestat 50 mg and then 100 mg (n = 7 men, 6 women) or placebo (n = 2 men, 2 women) once daily for 14 days per dose level.

Results

Avagacestat was rapidly absorbed, had a terminal elimination half-life of 38–65 h, and reached a steady-state concentration by day 10 of daily dosing. Exposure in young subjects increased in proportion to dose. There were no apparent differences in steady-state area under the plasma concentration–time curve between young and elderly subjects; however, elderly subjects demonstrated a higher maximum plasma concentration for avagacestat. Doses of avagacestat >50 mg/day reduced steady-state trough concentrations of CSF Aβ1–38, Aβ1–40 and Aβ1–42 in a dose-dependent fashion over 28 days of daily dosing. There were no signs of potential Notch-related dose-limiting toxicities.

Conclusion

The results support continued evaluation of avagacestat in an elderly target population with predementia and mild to moderate Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2010;6(2):158–94.

    Google Scholar 

  2. Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest. 2005;115:1121–9.

    PubMed  CAS  Google Scholar 

  3. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  PubMed  CAS  Google Scholar 

  4. Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem. 2009;110:1129–34.

    Article  PubMed  CAS  Google Scholar 

  5. Walsh DM, Selkoe DJ. A beta oligomers: a decade of discovery. J Neurochem. 2007;101:1172–84.

    Article  PubMed  CAS  Google Scholar 

  6. Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, et al. Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol. 2005;28:126–32.

    Article  PubMed  CAS  Google Scholar 

  7. Martone RL, Zhou H, Atchison K, Comery T, Xu JZ, Huang X, et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther. 2009;331:598–608.

    Article  PubMed  CAS  Google Scholar 

  8. Burton CR, Meredith JE, Barten DM, Goldstein ME, Krause CM, Kieras CJ, et al. The amyloid-beta rise and gamma-secretase inhibitor potency depend on the level of substrate expression. J Biol Chem. 2008;283:22992–3003.

    Article  PubMed  CAS  Google Scholar 

  9. Lanz TA, Karmilowicz MJ, Wood KM, Pozdnyakov N, Du P, Piotrowski MA, et al. Concentration-dependent modulation of amyloid-beta in vivo and in vitro using the gamma-secretase inhibitor, LY-450139. J Pharmacol Exp Ther. 2006;319:924–33.

    Article  PubMed  CAS  Google Scholar 

  10. Guardia-Laguarta C, Pera M, Lleo A. Gamma-secretase as a therapeutic target in Alzheimer’s disease. Curr Drug Targets. 2010;11:506–17.

    Article  PubMed  CAS  Google Scholar 

  11. Weerkamp F, Luis TC, Naber BA, Koster EE, Jeannotte L, van Dongen JJ, et al. Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program. Leukemia. 2006;20:1967–77.

    Article  PubMed  CAS  Google Scholar 

  12. Wright NA, Hoffmann W, Otto WR, Rio MC, Thim L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett. 1997;408:121–3.

    Article  PubMed  CAS  Google Scholar 

  13. Gillman KW, Starett JJE, Parker MF. Discovery and evaluation of BMS-708163, a potent, selective, and orally bioavailable gamma secretase inhibitor. ACS Med Chem Lett (in press).

  14. Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–4.

    Article  PubMed  CAS  Google Scholar 

  15. Gu H, Deng Y, Wang J, Aubry AF, Arnold ME. Development and validation of sensitive and selective LC-MS/MS methods for the determination of BMS-708163, a gamma-secretase inhibitor, in plasma and cerebrospinal fluid using deprotonated or formate adduct ions as precursor ions. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:2319–26.

    Article  PubMed  CAS  Google Scholar 

  16. Hansson SF, Andreasson U, Wall M, Skoog I, Andreasen N, Wallin A, et al. Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis. 2009;16:389–97.

    PubMed  CAS  Google Scholar 

  17. Rainen L, Oelmueller U, Jurgensen S, Wyrich R, Ballas C, Schram J, et al. Stabilization of mRNA expression in whole blood samples. Clin Chem. 2002;48:1883–90.

    PubMed  CAS  Google Scholar 

  18. Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 2004;350:1828–37.

    Article  PubMed  CAS  Google Scholar 

  19. Perrier D, Gibaldi M. General derivation of the equation for time to reach a certain fraction of steady state. J Pharm Sci. 1982;71:474–5.

    Article  PubMed  CAS  Google Scholar 

  20. Riegelman S, Collier P. The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J Pharmacokinet Biopharm. 1980;8:509–34.

    Article  PubMed  CAS  Google Scholar 

  21. Tong G, Wang JS, Sverdlov O, Huang SP, Slemmon R, Croop R, et al. Multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study of the oral gamma-secretase inhibitor BMS-708163 (avagacestat): tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clin Ther. 2012;34:654–67.

    Article  PubMed  CAS  Google Scholar 

  22. De Strooper B, Annaert W. Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu Rev Cell Dev Biol. 2010;26:235–60.

    Article  PubMed  Google Scholar 

  23. De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6:99–107.

    Article  PubMed  Google Scholar 

  24. Siemers ER, Quinn JF, Kaye J, Farlow MR, Porsteinsson A, Tariot P, et al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology. 2006;66:602–4.

    Article  PubMed  CAS  Google Scholar 

  25. Siemers ER, Dean RA, Friedrich S, Ferguson-Sells L, Gonzales C, Farlow MR, et al. Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-beta after inhibition of gamma-secretase. Clin Neuropharmacol. 2007;30:317–25.

    Article  PubMed  CAS  Google Scholar 

  26. Fleisher AS, Raman R, Siemers ER, Becerra L, Clark CM, Dean RA, et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol. 2008;65:1031–8.

    Article  PubMed  Google Scholar 

  27. Salloway S, Coric V, Brody M, Andreasen N, van Dyck C, Soininen H, et al. Safety and tolerability of BMS-708163 in a phase II study in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2011;7:6–7.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Bristol-Myers Squibb. All authors were employees of Bristol-Myers Squibb. Randy Dockens, Jun-Shen Wang, Lorna Castaneda, Shu-Pang Huang, Hewei Li, Robert M. Berman, Christina Smith, Charles F. Albright and Gary Tong have stock/stock options in Bristol-Myers Squibb.

The authors would also like to thank Brian Atkinson, PhD, of Bristol-Myers Squibb for providing writing and editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Tong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dockens, R., Wang, JS., Castaneda, L. et al. A Placebo-Controlled, Multiple Ascending Dose Study to Evaluate the Safety, Pharmacokinetics and Pharmacodynamics of Avagacestat (BMS-708163) in Healthy Young and Elderly Subjects. Clin Pharmacokinet 51, 681–693 (2012). https://doi.org/10.1007/s40262-012-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0005-x

Keywords

Navigation