Skip to main content
Log in

Evaluation of Cardiac Adverse Events with Nivolumab Using a Japanese Real-World Database

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background

Nivolumab has been used for the treatment of various types of cancers and has achieved improvements in overall survival. However, nivolumab can cause a variety of adverse events (AEs). Among these, cardiac-specific AEs have received little attention in clinical trials, despite their life-threatening potential.

Objective

The present study aimed to determine the risk of nivolumab-induced cardiac AEs, time to onset, incidence rates, and post hoc outcomes using the Japanese Adverse Drug Event Report database.

Methods

We analyzed data for the period between April 2004 and March 2021. Data on cardiac AEs were extracted and relative risk of AEs was estimated using the reporting odds ratio (ROR).

Results

We analyzed 1,772,494 reports and identified 18,721 reports of AEs caused by nivolumab. Of these, 409 reports involved cardiac AEs. Signals were detected for four cardiac AEs: myocarditis; pericardial effusion; pericarditis; and immune-mediated myocarditis. Among these, myocarditis was the most frequently reported (35.0%) and included fatal cases. A histogram of times to onset showed nivolumab-associated AEs occurring 41–127 days after starting administration, with outlier cases of myocarditis or pericardial effusion occurring after more than one year, both with catastrophic consequences.

Conclusion

This study focused on cardiac AEs caused by nivolumab as post-marketing AEs. Myocarditis and pericardial effusion have been associated with some fatal cases after administration of nivolumab. Patients should be monitored for signs of onset for these AEs, not only at the start of administration, but also over an extended period after nivolumab administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. https://doi.org/10.1126/science.aar4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang YK, Chen LT, Ryu MH, Oh DY, Oh SC, Chung HC, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022;23:234–47. https://doi.org/10.1016/S1470-2045(21)00692-6.

    Article  CAS  PubMed  Google Scholar 

  3. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398:27–40. https://doi.org/10.1016/S0140-6736(21)00797-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doki Y, Ajani JA, Kato K, Xu J, Wyrwicz L, Motoyama S, et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N Engl J Med. 2022;386:449–62. https://doi.org/10.1056/NEJMoa2111380.

    Article  CAS  PubMed  Google Scholar 

  5. Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:198–211. https://doi.org/10.1016/S1470-2045(20)30641-0.

    Article  CAS  PubMed  Google Scholar 

  6. Motzer RJ, Powles T, Burotto M, Escudier B, Bourlon MT, Shah AY, et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23:888–98. https://doi.org/10.1016/S1470-2045(22)00290-X.

    Article  CAS  PubMed  Google Scholar 

  7. Darnell EP, Mooradian MJ, Baruch EN, Yilmaz M, Reynolds KL. Immune-related adverse events (irAEs): diagnosis, management, and clinical pearls. Curr Oncol Rep. 2020;22:39. https://doi.org/10.1007/s11912-020-0897-9.

    Article  PubMed  Google Scholar 

  8. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60. https://doi.org/10.1016/j.ctrv.2016.02.001.

    Article  CAS  PubMed  Google Scholar 

  9. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2:1346–53. https://doi.org/10.1001/jamaoncol.2016.1051.

    Article  PubMed  Google Scholar 

  10. González-Rodríguez E, Rodríguez-Abreu D, Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist. 2016;21:804–16. https://doi.org/10.1634/theoncologist.2015-0509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mascolo A, Scavone C, Ferrajolo C, Rafaniello C, Danesi R, Del Re M, et al. Immune checkpoint inhibitors and cardiotoxicity: an analysis of spontaneous reports in eudravigilance. Drug Saf. 2021;44:957–71. https://doi.org/10.1007/s40264-021-01086-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chauhan A, Burkeen G, Houranieh J, Arnold S, Anthony L. Immune checkpoint-associated cardiotoxicity: case report with systematic review of literature. Ann Oncol. 2017;28:2034–8. https://doi.org/10.1093/annonc/mdx213.

    Article  CAS  PubMed  Google Scholar 

  13. Atallah-Yunes SA, Kadado AJ, Kaufman GP, Hernandez-Montfort J. Immune checkpoint inhibitor therapy and myocarditis: a systematic review of reported cases. J Cancer Res Clin Oncol. 2019;145:1527–57. https://doi.org/10.1007/s00432-019-02927-x.

    Article  CAS  PubMed  Google Scholar 

  14. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, Zhao S, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4:1721–8. https://doi.org/10.1001/jamaoncol.2018.3923.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ji HH, Tang XW, Dong Z, Song L, Jia YT. Adverse event profiles of anti-CTLA-4 and anti-PD-1 monoclonal antibodies alone or in combination: analysis of spontaneous reports submitted to FAERS. Clin Drug Investig. 2019;39(3):319–30. https://doi.org/10.1007/s40261-018-0735-0.

    Article  CAS  PubMed  Google Scholar 

  16. Uchida M, Kondo Y, Suzuki S, Hosohata K. Evaluation of acute kidney injury associated with anticancer drugs used in gastric cancer in the Japanese adverse drug event report database. Ann Pharmacother. 2019;53:1200–6. https://doi.org/10.1177/1060028019865870.

    Article  CAS  PubMed  Google Scholar 

  17. Sugawara H, Uchida M, Suzuki S, Suga Y, Uesawa Y, Nakagawa T, et al. Analyses of respiratory depression associated with opioids in cancer patients based on the Japanese adverse drug event report database. Biol Pharm Bull. 2019;42:1185–91. https://doi.org/10.1248/bpb.b19-00105.

    Article  CAS  PubMed  Google Scholar 

  18. Uchida M, Kawashiri T, Maegawa N, Takano A, Hosohata K, Uesawa Y. Pharmacovigilance evaluation of bendamustine-related skin disorders using the Japanese adverse drug event report database. J Pharm Pharm Sci. 2021;24:16–22. https://doi.org/10.18433/jpps31597.

    Article  CAS  PubMed  Google Scholar 

  19. Nakao S, Uchida M, Satoki A, Okamoto K, Uesawa Y, Shimizu T. Evaluation of cardiac adverse events associated with carfilzomib using a Japanese real-world database. Oncology. 2022;100:60–4. https://doi.org/10.1159/000519687.

    Article  CAS  PubMed  Google Scholar 

  20. Hu J, Tian R, Ma Y, Zhen H, Ma X, Su Q, et al. Risk of cardiac adverse events in patients treated with immune checkpoint inhibitor regimens: a systematic review and meta-analysis. Front Oncol. 2021;11: 645245. https://doi.org/10.3389/fonc.2021.645245.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zamami Y, Niimura T, Okada N, Koyama T, Fukushima K, Izawa-Ishizawa Y, et al. Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 2019;5:1635–7. https://doi.org/10.1001/jamaoncol.2019.3113.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ma R, Wang Q, Meng D, Li K, Zhang Y. Immune checkpoint inhibitors-related myocarditis in patients with cancer: an analysis of international spontaneous reporting systems. BMC Cancer. 2021;21:38. https://doi.org/10.1186/s12885-020-07741-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kashiwagi M, Shimizu T, Kawai R, Kawashiri T, Uesawa Y, Uchida M. Time to onset of bendamustine-associated skin damage using the spontaneous reporting system. Anticancer Res. 2022;42:2737–41. https://doi.org/10.21873/anticanres.15752.

    Article  CAS  PubMed  Google Scholar 

  24. van Puijenbroek EP, Bate A, Leufkens HG, Lindquist M, Orre R, Egberts AC. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11:3–10. https://doi.org/10.1002/pds.668.

    Article  CAS  PubMed  Google Scholar 

  25. Ando G, Taguchi K, Enoki Y, Yokoyama Y, Kizu J, Matsumoto K. Evaluation of the expression time of ganciclovir-induced adverse events using JADER and FAERS. Biol Pharm Bull. 2019;42:1799–804. https://doi.org/10.1248/bpb.b19-00156.

    Article  CAS  PubMed  Google Scholar 

  26. Sauzet O, Carvajal A, Escudero A, Molokhia M, Cornelius VR. Illustration of the Weibull shape parameter signal detection tool using electronic healthcare record data. Drug Saf. 2013;36:995–1006. https://doi.org/10.1007/s40264-013-0061-7.

    Article  PubMed  Google Scholar 

  27. Fan Q, Hu Y, Yang C, Zhao B. Myocarditis following the use of different immune checkpoint inhibitor regimens: a real-world analysis of post-marketing surveillance data. Int Immunopharmacol. 2019;76: 105866. https://doi.org/10.1016/j.intimp.2019.105866.

    Article  CAS  PubMed  Google Scholar 

  28. Ganatra S, Neilan TG. Immune checkpoint inhibitor-associated myocarditis. Oncologist. 2018;23:879–86. https://doi.org/10.1634/theoncologist.2018-0130.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shimada K, Hasegawa S, Nakao S, Mukai R, Matsumoto K, Tanaka M, et al. Adverse event profiles of ifosfamide-induced encephalopathy analyzed using the Food and Drug Administration Adverse Event Reporting System and the Japanese Adverse Drug Event Report databases. Cancer Chemother Pharmacol. 2019;84:1097–105. https://doi.org/10.1007/s00280-019-03949-5.

    Article  CAS  PubMed  Google Scholar 

  30. Mukai R, Hasegawa S, Umetsu R, Nakao S, Shimada K, Uranishi H, et al. Evaluation of pregabalin-induced adverse events related to falls using the FDA adverse event reporting system and Japanese Adverse Drug Event Report databases. J Clin Pharm Ther. 2019;44:285–91. https://doi.org/10.1111/jcpt.12790.

    Article  CAS  PubMed  Google Scholar 

  31. Nawa H, Niimura T, Yagi K, Goda M, Zamami Y, Ishizawa K. Evaluation of potential complication of interstitial lung disease with abemaciclib and palbociclib treatments. Cancer Rep (Hoboken). 2022;5: e1402. https://doi.org/10.1002/cnr2.1402.

    Article  CAS  PubMed  Google Scholar 

  32. Braden J, Lee JH. Immune checkpoint inhibitor induced pericarditis and encephalitis in a patient treated with ipilimumab and nivolumab for metastatic melanoma: a case report and review of the literature. Front Oncol. 2021;11: 749834. https://doi.org/10.3389/fonc.2021.749834.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Canale ML, Camerini A, Casolo G, Lilli A, Bisceglia I, Parrini I, Lestuzzi C, Del Meglio J, Puccetti C, Camerini L, Amoroso D, Maurea N. Incidence of pericardial effusion in patients with advanced non-small cell lung cancer receiving immunotherapy. Adv Ther. 2020;37:3178–84. https://doi.org/10.1007/s12325-020-01386-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saade A, Mansuet-Lupo A, Arrondeau J, Thibault C, Mirabel M, Goldwasser F, Oudard S, Weiss L. Pericardial effusion under nivolumab: case-reports and review of the literature. J Immunother Cancer. 2019;7:266. https://doi.org/10.1186/s40425-019-0760-4.

    Article  PubMed  Google Scholar 

  35. Vittorio A, Sharma R, Siejka D, Bhattarai K, Hardikar A. Recurrent pericardial effusion while receiving nivolumab for metastatic lung adenocarcinoma: case report and review of the literature. Clin Lung Cancer. 2018;19:e717–20. https://doi.org/10.1016/j.cllc.2018.05.010.

    Article  PubMed  Google Scholar 

  36. Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, Gobert A, Spano JP, Balko JM, Bonaca MP, Roden DM, Johnson DB, Moslehi JJ. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19:1579–89. https://doi.org/10.1016/S1470-2045(18)30608-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pasquali S, Hadjinicolaou AV, ChiarionSileni V, Rossi CR, Mocellin S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev. 2018;2: CD011123. https://doi.org/10.1002/14651858.

    Article  CAS  PubMed  Google Scholar 

  38. Banna GL, Cantale O, Bersanelli M, Del Re M, Friedlaender A, Cortellini A, Addeo A. Are anti-PD1 and anti-PD-L1 alike? The non-small-cell lung cancer paradigm. Oncol Rev. 2020;14:490. https://doi.org/10.4081/oncol.2020.490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Yoshihiro Uesawa of Meiji Pharmaceutical University's Department of Medical Molecular Informatics for providing a helpful discussion, and to Tadashi Hirooka (TAIHO PHARMA Corporation) for giving a talk on Hirooka techniques using the JADER database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Kanbayashi.

Ethics declarations

Funding

The authors have not disclosed any funding.

Conflict of interest

All authors declare no competing interests.

Ethical approval

Ethics approval was not sought for this study; given the database-related, observational design without direct involvement of any research subjects. All results were obtained from data openly available online from the PMDA website (https://www.pmda.go.jp/english/index.html, https://www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp). All data from the JADER database were fully anonymized by the relevant regulatory authority before we accessed them. Thus, all methods were performed in accordance with the relevant guidelines and regulations.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author contributions

Yuko Kanbayashi and Tadashi Shimizu: data curation; Writing—original draft; Writing—review and editing. Miku Anzai and Rika Kawai: data curation; Writing—review and editing. Mayako Uchida: conceptualization; supervision; writing—review and editing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanbayashi, Y., Shimizu, T., Anzai, M. et al. Evaluation of Cardiac Adverse Events with Nivolumab Using a Japanese Real-World Database. Clin Drug Investig 43, 177–184 (2023). https://doi.org/10.1007/s40261-023-01246-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-023-01246-x

Navigation