Skip to main content
Log in

Safety of Glucagon-Like Peptide-1 Receptor Agonists: A Real-World Study Based on the US FDA Adverse Event Reporting System Database

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as adjunctive therapy to lifestyle intervention and metformin treatment in type 2 diabetes mellitus patients, as most GLP-1RAs have cardiovascular benefits; however, a number of adverse events (AEs) have been reported in postmarketing surveillance.

Objective

The aim of this study was to describe the AEs associated with GLP-1RA monotherapy and identify important medical event (IME) signals for GLP-1RAs.

Methods

Data from 1 April 2005 to 31 December 2021 from the US FDA Adverse Event Reporting System (FAERS) database were extracted to conduct disproportionality analysis and Bayesian analysis. AEs and IMEs were classified by system organ classes (SOCs) and preferred terms (PTs) according to the Medical Dictionary for Regulatory Activities (MedDRA®). The reporting odds ratio (ROR) and information component (IC) were used to indicate the disproportionality.

Results

A total of 71,515 records involving GLP-1RA monotherapy were submitted to the database, of which 16,350 records were GLP-1RA/IME pairs. Significant disproportionality emerged in five SOCs: ‘gastrointestinal disorders’ (n = 13,104; lower end of the 95% confidence interval (CI) of the IC [IC025] = 1.34), ‘investigations’ (n = 6889; IC025 = 0.64), ‘metabolism and nutrition disorders’ (n = 2943; IC025 = 0.44), ‘neoplasms benign/malignant’ (n = 1989; IC025 = 0.01), and ‘hepatobiliary disorders’ (n = 1497; IC025 = 0.38). The most common AEs were pancreatitis, nausea, and weight decrease. Unexpected significant AEs were detected, such as ileus, osteomyelitis, renal cell carcinoma, nephrolithiasis, and drug-induced liver injury.

Conclusion

The majority of AEs have been listed in the prescribing information or reported in previous studies, however we found significant disproportionality in some specific tumor- and liver-related AEs. Clinicians should pay more attention to the newly detected disproportionality that may be triggered by GLP-1RAs, especially in the vulnerable population after long-term use. Considering the limitations of the FAERS database, there is a need for additional pharmacoepidemiological approaches to validate the results of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013;2013: 653789. https://doi.org/10.1155/2013/653789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9. https://doi.org/10.2337/dc14-2441.

    Article  PubMed  Google Scholar 

  3. Honigberg MC, Chang LS, McGuire DK, Plutzky J, Aroda VR, Vaduganathan M. Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease: a review. JAMA Cardiol. 2020;5(10):1182–90. https://doi.org/10.1001/jamacardio.2020.1966.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  5. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  6. Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci. 2021;17(8):2050–68. https://doi.org/10.7150/ijbs.59965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujioka K, Harris SR. Barriers and solutions for prescribing obesity pharmacotherapy. Endocrinol Metab Clin North Am. 2020;49(2):303–14. https://doi.org/10.2174/1381612826666200909142126.

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Zou Y, Qian H. GLP-1R agonists for the treatment of obesity: a patent review (2015-present). Expert Opin Ther Pat. 2020;30(10):781–94. https://doi.org/10.1016/j.ecl.2020.02.007.

    Article  CAS  PubMed  Google Scholar 

  9. Aaseth J, Ellefsen S, Alehagen U, Sundfør TM, Alexander J. Diets and drugs for weight loss and health in obesity-An update. Biomed Pharmacother. 2021;140: 111789. https://doi.org/10.1016/j.biopha.2021.111789.

    Article  CAS  PubMed  Google Scholar 

  10. Wenten M, Gaebler JA, Hussein M, Pelletier EM, Smith DB, Girase P, et al. Relative risk of acute pancreatitis in initiators of exenatide twice daily compared with other anti-diabetic medication: a follow-up study. Diabet Med. 2012;29(11):1412–8. https://doi.org/10.1111/j.1464-5491.2012.03652.x.

    Article  CAS  PubMed  Google Scholar 

  11. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  12. Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–6. https://doi.org/10.1053/j.gastro.2011.02.018.

    Article  CAS  PubMed  Google Scholar 

  13. Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377(9):839–48. https://doi.org/10.1056/NEJMoa1616011.

    Article  CAS  PubMed  Google Scholar 

  14. Monami M, Nreu B, Scatena A, Cresci B, Andreozzi F, Sesti G, et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab. 2017;19(9):1233–41. https://doi.org/10.1111/dom.12926.

    Article  CAS  PubMed  Google Scholar 

  15. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao X, Liu Z, Song H. Thyroid dysfunction related to vascular endothelial growth factor receptor tyrosine kinase inhibitors: a real-world study based on FAERS. J Clin Pharm Ther. 2021;46(5):1418–25. https://doi.org/10.1111/jcpt.13472.

    Article  CAS  PubMed  Google Scholar 

  17. Yang R, Yin N, Zhao Y, Li D, Zhang X, Li X, et al. Adverse events during pregnancy associated with entecavir and adefovir: new insights from a real-world analysis of cases reported to FDA adverse event reporting system. Front Pharmacol. 2021;12: 772768. https://doi.org/10.3389/fphar.2021.772768.

    Article  CAS  PubMed  Google Scholar 

  18. Katsuhara Y, Ikeda S. Correlations between SGLT-2 inhibitors and acute renal failure by signal detection using FAERS: stratified analysis for reporting country and concomitant drugs. Clin Drug Investig. 2021;41(3):235–43. https://doi.org/10.1007/s40261-021-01006-9.

    Article  CAS  PubMed  Google Scholar 

  19. Chen C, Chen T, Liang J, Guo X, Xu J, Zheng Y, et al. Cardiotoxicity induced by immune checkpoint inhibitors: a pharmacovigilance study from 2014 to 2019 based on FAERS. Front Pharmacol. 2021;12: 616505. https://doi.org/10.3389/fphar.2021.616505.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eurpean Medicines Agency. Important medical event list. Available at: https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance/eudravigilance-system-overview. Accessed Jan 2022.

  21. Zhou X, Ye X, Guo X, Liu D, Xu J, Hu F, et al. Safety of SGLT2 inhibitors: a pharmacovigilance study from 2013 to 2021 based on FAERS. Front Pharmacol. 2021;12: 766125. https://doi.org/10.3389/fphar.2021.766125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Setyawan J, Azimi N, Strand V, Yarur A, Fridman M. Reporting of thromboembolic events with JAK inhibitors: analysis of the FAERS database 2010–2019. Drug Saf. 2021;44(8):889–97. https://doi.org/10.1007/s40264-021-01082-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Puijenbroek EP, Bate A, Leufkens HG, Lindquist M, Orre R, Egberts AC. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11(1):3–10. https://doi.org/10.1002/pds.668.

    Article  CAS  PubMed  Google Scholar 

  24. Björnsson ES. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int. 2017;37(2):173–8. https://doi.org/10.1111/liv.13308.

    Article  PubMed  Google Scholar 

  25. Jing Y, Yang J, Johnson DB, Moslehi JJ, Han L. Harnessing big data to characterize immune-related adverse events. Nat Rev Clin Oncol. 2022;19(4):269–80. https://doi.org/10.1038/s41571-021-00597-8.

    Article  PubMed  Google Scholar 

  26. Yu RJ, Krantz MS, Phillips EJ, Stone CA Jr. Emerging causes of drug-induced anaphylaxis: a review of anaphylaxis-associated reports in the FDA adverse event reporting system (FAERS). J Allergy Clin Immunol Pract. 2021;9(2):819-29.e2. https://doi.org/10.1016/j.jaip.2020.09.021.

    Article  CAS  PubMed  Google Scholar 

  27. Yang Z, Yu M, Mei M, Chen C, Lv Y, Xiang L, et al. The association between GLP-1 receptor agonist and diabetic ketoacidosis in the FDA adverse event reporting system. Nutr Metab Cardiovasc Dis. 2022;32(2):504–10. https://doi.org/10.1016/j.numecd.2021.10.003.

    Article  CAS  PubMed  Google Scholar 

  28. Ellenbroek JH, Töns HA, van Westerouen Meeteren MJ, de Graaf N, Hanegraaf MA, Rabelink TJ, et al. Glucagon-like peptide-1 receptor agonist treatment reduces beta cell mass in normoglycaemic mice. Diabetologia. 2013;56(9):1980–6. https://doi.org/10.1007/s00125-013-2957-2.

    Article  CAS  PubMed  Google Scholar 

  29. Butler PC, Elashoff M, Elashoff R, Gale EA. A critical analysis of the clinical use of incretin-based therapies: Are the GLP-1 therapies safe? Diabetes Care. 2013;36(7):2118–25. https://doi.org/10.2337/dc12-2713.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med. 2013;173(7):534–9. https://doi.org/10.1001/jamainternmed.2013.2720.

    Article  CAS  PubMed  Google Scholar 

  31. Soranna D, Bosetti C, Casula M, Tragni E, Catapano AL, Vecchia CL, et al. Incretin-based drugs and risk of acute pancreatitis: a nested-case control study within a healthcare database. Diabetes Res Clin Pract. 2015;108(2):243–9. https://doi.org/10.1016/j.diabres.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  32. Faillie JL, Azoulay L, Patenaude V, Hillaire-Buys D, Suissa S. Incretin based drugs and risk of acute pancreatitis in patients with type 2 diabetes: cohort study. BMJ. 2014;348: g2780. https://doi.org/10.1136/bmj.g2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi J, Deng Q, Wan C, Zheng M, Huang F, Tang B. Fluorometric probing of the lipase level as acute pancreatitis biomarkers based on interfacially controlled aggregation-induced emission (AIE). Chem Sci. 2017;8(9):6188–95. https://doi.org/10.1039/c7sc02189e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Storgaard H, Cold F, Gluud LL, Vilsbøll T, Knop FK. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19(6):906–8. https://doi.org/10.1111/dom.12885.

    Article  CAS  PubMed  Google Scholar 

  35. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502. https://doi.org/10.1038/s41575-021-00457-x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sadr-Azodi O, Oskarsson V, Discacciati A, Videhult P, Askling J, Ekbom A. Pancreatic cancer following acute pancreatitis: a population-based matched cohort study. Am J Gastroenterol. 2018;113(11):1711–9. https://doi.org/10.1038/s41395-018-0255-9.

    Article  PubMed  Google Scholar 

  37. The Medicines and Healthcare products Regulatory Agency (MHRA). MHRA warns about GLP-1 receptor agonists: reports of diabetic ketoacidosis when concomitant insulin was rapidly reduced or discontinued. 2019. Available at: https://www.gov.uk/drug-safety-update/glp-1-receptor-agonists-reports-of-diabeticketoacidosis-when-concomitant-insulin-was-rapidly-reduced-ordiscontinued. Accessed 22 Dec 2020.

  38. US FDA. FDA is evaluating the need for regulatory action about DKA associated with GLP-1RA. Available at: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/october-december-2019-potential-signals-serious-risksnew-safety-information-identified-fda-adverse. Accessed 22 Dec 2021.

  39. Harrison SA, Gawrieh S, Roberts K, Lisanti CJ, Schwope RB, Cebe KM, et al. Prospective evaluation of the prevalence of non-alcoholic fatty liver disease and steatohepatitis in a large middle-aged US cohort. J Hepatol. 2021;75(2):284–91. https://doi.org/10.1016/j.jhep.2021.02.034.

    Article  PubMed  Google Scholar 

  40. Kalavalapalli S, Bril F, Guingab J, Vergara A, Garrett TJ, Sunny NE, et al. Impact of exenatide on mitochondrial lipid metabolism in mice with nonalcoholic steatohepatitis. J Endocrinol. 2019;241(3):293–305. https://doi.org/10.1530/JOE-19-0007.

    Article  CAS  PubMed  Google Scholar 

  41. Chan WK, Tan SS, Chan SP, Lee YY, Tee HP, Mahadeva S, et al. Malaysian Society of Gastroenterology and Hepatology consensus statement on metabolic dysfunction-associated fatty liver disease. J Gastroenterol Hepatol. 2022;37(5):795–811. https://doi.org/10.1111/jgh.15787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cusi K. Incretin-based therapies for the management of nonalcoholic fatty liver disease in patients with type 2 diabetes. Hepatology. 2019;69(6):2318–22. https://doi.org/10.1002/hep.30670.

    Article  PubMed  Google Scholar 

  43. US FDA. FDA is evaluating the need for regulatory action about drug-induced liver injury associated with GLP-1RA. Available at: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/january-march-2021-potential-signals-serious-risksnew-safety-information-identified-fda-adverse. Accessed 1 Jan 2022.

  44. Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384(12):1113–24. https://doi.org/10.1056/NEJMoa2028395.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Zhigang Zhao.

Ethics declarations

Funding

No funding was received to conduct this study.

Author contributions

Tingxi Wu and Yang Zhang designed the research, analyzed the data, and wrote a draft of the manuscript. Yanfeng Shi, Shangyi Liu, Kefu Yu and Mei Zhao contributed to the data collection and analysis. Yang Zhang and Zhigang Zhao directed the research and revised the manuscript.

Conflicts of interest

Tingxi Wu, Yang Zhang, Yanfeng Shi, Kefu Yu, Mei Zhao, Shangyi Liu, and Zhigang Zhao have no conflicts of interest to disclose.

Availability of data and material

The data are available in the FAERS (https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html).

Ethics approval

No institutional ethics approval was required because this study utilized anonymized data from an open-access database.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 567 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Zhang, Y., Shi, Y. et al. Safety of Glucagon-Like Peptide-1 Receptor Agonists: A Real-World Study Based on the US FDA Adverse Event Reporting System Database. Clin Drug Investig 42, 965–975 (2022). https://doi.org/10.1007/s40261-022-01202-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-022-01202-1

Navigation