Skip to main content
Log in

Adverse Cutaneous Drug Reactions Associated with Old- and New- Generation Antiepileptic Drugs Using the Japanese Pharmacovigilance Database

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript


Background and Objective

Adverse cutaneous drug reactions associated with antiepileptic drugs (AEDs) are a serious problem in the clinical setting. New-generation AEDs have been reported to be better tolerated than old-generation forms; however, information about the risks of adverse cutaneous drug reactions to new-generation AEDs is limited.


The purpose of this study was to clarify the association of AEDs with adverse cutaneous drug reactions using a spontaneous reporting database.


We performed a retrospective pharmacovigilance disproportionality analysis using the Japanese Adverse Drug Event Report (JADER) database. Adverse event reports submitted to the Pharmaceuticals and Medical Devices Agency between April 2004 and January 2017 were analyzed. Based on reports of all adverse events, we obtained 4805 reports of adverse cutaneous drug reactions associated with AEDs, and calculated the reporting odds ratio (ROR) and 95% confidence interval (CI) for drug rash, Stevens–Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN).


Individual AEDs had variable signals for drug rash, SJS, and TEN. The strongest signals were detected for drug rash caused by lamotrigine (ROR 9.18, 95% CI 8.65–9.74), SJS caused by zonisamide (ROR 9.85, 95% CI 8.23–11.78), and TEN caused by phenobarbital (ROR 14.08, 95% CI 11.28–17.57).


There are clear differences in the risk of cutaneous reactions among AEDs, and further studies are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, et al. Non-eeg seizure-detection systems and potential sudep prevention: state of the art. Seizure. 2013;22:345–55.

    Article  PubMed  Google Scholar 

  2. Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: a systematic review and meta-analysis. Neurology. 2011;77:1005–12.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kowski AB, Weissinger F, Gaus V, Fidzinski P, Losch F, Holtkamp M. Specific adverse effects of antiepileptic drugs–a true-to-life monotherapy study. Epilepsy Behav. 2016;54:150–7.

    Article  PubMed  Google Scholar 

  4. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9.

    Article  CAS  PubMed  Google Scholar 

  5. Perucca P, Carter J, Vahle V, Gilliam FG. Adverse antiepileptic drug effects: toward a clinically and neurobiologically relevant taxonomy. Neurology. 2009;72:1223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brodie MJ, Perucca E, Ryvlin P, Ben-Menachem E, Meencke HJ, Levetiracetam Monotherapy Study Group. Comparison of levetiracetam and controlled-release carbamazepine in newly diagnosed epilepsy. Neurology. 2007;68:402–8.

    Article  CAS  PubMed  Google Scholar 

  7. Halevy S, Ghislain PD, Mockenhaupt M, Fagot JP, Bouwes Bavinck JN, Sidoroff A, et al. Allopurinol is the most common cause of Stevens–Johnson Syndrome and toxic epidermal necrolysis in europe and israel. J Am Acad Dermatol. 2008;58:25–32.

    Article  PubMed  Google Scholar 

  8. Werhahn KJ, Trinka E, Dobesberger J, Unterberger I, Baum P, Deckert-Schmitz M, et al. A randomized, double-blind comparison of antiepileptic drug treatment in the elderly with new-onset focal epilepsy. Epilepsia. 2015;56:450–9.

    Article  CAS  PubMed  Google Scholar 

  9. Trinka E, Giorgi L, Patten A, Segieth J. Safety and tolerability of zonisamide in elderly patients with epilepsy. Acta Neurol Scand. 2013;128:422–8.

    Article  CAS  PubMed  Google Scholar 

  10. Mahe J, de Campaigno EP, Chene AL, Montastruc JL, Despas F, Jolliet P. Pleural adverse drugs reactions and protein kinase inhibitors: identification of suspicious targets by disproportionality analysis from Vigibase. Br J Clin Pharmacol. 2018;84(10):2373–83.

    Article  CAS  PubMed  Google Scholar 

  11. Mendes D, Alves C, Batel-Marques F. Safety profiles of adalimumab, etanercept and infliximab: a pharmacovigilance study using a measure of disproportionality in a database of spontaneously reported adverse events. J Clin Pharm Therap. 2014;39:307–13.

    Article  CAS  Google Scholar 

  12. Hosohata K, Inada A, Oyama S, Furushima D, Yamada H, Iwanaga K. Surveillance of drugs that most frequently induce acute kidney injury: a pharmacovigilance approach. J Clin Pharm Therap. 2019;44(1):49–53.

    Article  CAS  Google Scholar 

  13. Gosho M. Risk of hypoglycemia after concomitant use of antidiabetic, antihypertensive, and antihyperlipidemic medications: a database study. J Clin Pharmacol. 2018;58(10):1324–31.

    Article  CAS  PubMed  Google Scholar 

  14. Hosohata K, Matsuoka E, Inada A, Oyama S, Niinomi I, Mori Y, et al. Differential profiles of adverse events associated with mycophenolate mofetil between adult and pediatric renal transplant patients. J Int Med Res. 2018;46(11):4617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oyama S, Hosohata K, Inada A, Niinomi I, Mori Y, Yamaguchi Y, et al. Drug-induced tubulointerstitial nephritis in a retrospective study using spontaneous reporting system database. Therap Clin Risk Manag. 2018;14:1599–604.

    Article  Google Scholar 

  16. Kose E. Adverse drug event profile associated with pregabalin among patients with and without cancer: analysis of a spontaneous reporting database. J Clin Pharm Therap. 2018;43:543–9.

    Article  CAS  Google Scholar 

  17. Anzai T, Takahashi K, Watanabe M. Adverse reaction reports of neuroleptic malignant syndrome induced by atypical antipsychotic agents in the Japanese Adverse Drug Event Report (JADER) database. Psychiatry Clin Neurosci. 2019;73(1):27–33.

    Article  CAS  Google Scholar 

  18. Bate A, Evans SJ. Quantitative signal detection using spontaneous adr reporting. Pharmacoepidemiol Drug Saf. 2009;18:427–36.

    Article  CAS  PubMed  Google Scholar 

  19. Maignen F, Hauben M, Hung E, Van Holle L, Dogne JM. Assessing the extent and impact of the masking effect of disproportionality analyses on two spontaneous reporting systems databases. Pharmacoepidemiol Drug Saf. 2014;23:195–207.

    Article  PubMed  Google Scholar 

  20. Italiano D, Perucca E. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update. Clin Pharmacokinet. 2013;52:627–45.

    Article  CAS  PubMed  Google Scholar 

  21. Theitler J, Brik A, Shaniv D, Berkovitch M, Gandelman-Marton R. Antiepileptic drug treatment in community-dwelling older patients with epilepsy: a retrospective observational study of old- versus new-generation antiepileptic drugs. Drugs Aging. 2017;34:479–87.

    Article  CAS  PubMed  Google Scholar 

  22. Mohd-Tahir NA, Li SC. Meta-analyses of newer antiepileptic drugs as adjunct for treatment of focal epilepsy in children. Epilepsy Res. 2018;139:113–22.

    Article  CAS  PubMed  Google Scholar 

  23. Alvestad S, Lydersen S, Brodtkorb E. Rash from antiepileptic drugs: Influence by gender, age, and learning disability. Epilepsia. 2007;48:1360–5.

    Article  CAS  PubMed  Google Scholar 

  24. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet. 2007;369:1000–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng QY, Fan TT, Zhu P, He RQ, Bao YX, Zheng RY, et al. Comparative long-term effectiveness of a monotherapy with five antiepileptic drugs for focal epilepsy in adult patients: a prospective cohort study. PLoS One. 2015;10:e0131566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roujeau JC, Kelly JP, Naldi L, Rzany B, Stern RS, Anderson T, et al. Medication use and the risk of Stevens–Johnson Syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333:1600–7.

    Article  CAS  PubMed  Google Scholar 

  27. Mockenhaupt M, Viboud C, Dunant A, Naldi L, Halevy S, Bouwes Bavinck JN, et al. Stevens-Johnson Syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The euroscar-study. J Investig Dermatol. 2008;128:35–44.

    Article  CAS  PubMed  Google Scholar 

  28. Mockenhaupt M, Messenheimer J, Tennis P, Schlingmann J. Risk of Stevens–Johnson Syndrome and toxic epidermal necrolysis in new users of antiepileptics. Neurology. 2005;64:1134–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lee HJ, Son JM, Mun J, Kim DW. Safety and efficacy of zonisamide in patients with epilepsy: a post-marketing surveillance study. J Epilepsy Res. 2015;5:89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Knowles SR, Shapiro LE, Shear NH. Anticonvulsant hypersensitivity syndrome: incidence, prevention and management. Drug Saf. 1999;21:489–501.

    Article  CAS  PubMed  Google Scholar 

  31. Wang XQ, Shi XB, Au R, Chen FS, Wang F, Lang SY. Influence of chemical structure on skin reactions induced by antiepileptic drugs—the role of the aromatic ring. Epilepsy Res. 2011;94:213–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lu W, Uetrecht JP. Possible bioactivation pathways of lamotrigine. Drug Metab Dispos. 2007;35:1050–6.

    Article  CAS  PubMed  Google Scholar 

  33. Naisbitt DJ, Farrell J, Wong G, Depta JP, Dodd CC, Hopkins JE, et al. Characterization of drug-specific t cells in lamotrigine hypersensitivity. J Allergy Clin Immunol. 2003;111:1393–403.

    Article  CAS  PubMed  Google Scholar 

  34. Franciotta D, Kwan P, Perucca E. Genetic basis for idiosyncratic reactions to antiepileptic drugs. Curr Opin Neurol. 2009;22:144–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations



KH, AI, and SO conceived and designed the study; KH, AI, SO, IN, TW, and KI analyzed the data and drafted the manuscript. All authors have read and approved the final manuscript submitted for publication.

Corresponding author

Correspondence to Keiko Hosohata.

Ethics declarations


Keiko Hosohata received research support from the Science Research Promotion Fund (Grant no. 42).

Conflict of interest

Keiko Hosohata, Ayaka Inada, Saki Oyama, Iku Niinomi, Tomohito Wakabayashi and Kazunori Iwanaga report no conflicts of interest related to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosohata, K., Inada, A., Oyama, S. et al. Adverse Cutaneous Drug Reactions Associated with Old- and New- Generation Antiepileptic Drugs Using the Japanese Pharmacovigilance Database. Clin Drug Investig 39, 363–368 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: