Skip to main content
Log in

Immunotherapy Guided by Immunohistochemistry PD-L1 Testing for Patients with NSCLC: A Microsimulation Model-Based Effectiveness and Cost-Effectiveness Analysis

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background

On the basis of immunohistochemistry PD-L1 testing results, patients with advanced non-small cell lung cancer (NSCLC) are treated differently. Theoretically, patients with high PD-L1 expression (50% or 1%) should receive PD-1 monotherapy for fewer adverse reactions and cost savings from avoiding chemotherapy; however, there is controversy surrounding the cut-off criteria (1% or 50%) for immunohistochemistry testing and threshold for PD-1 monotherapy.

Objective

This study aims to predict the effectiveness and cost-effectiveness of different immunotherapy strategies for patients with NSCLC in China from the healthcare system perspective.

Patients and Methods

A microsimulation model was developed to evaluate the effectiveness and cost-effectiveness of three treatment strategies: PD-L1 testing (1%) (PD-1 monotherapy for those with PD-L1 expression at 1% threshold, and combination with chemotherapy for others with immunohistochemistry testing), PD-L1 testing (50%) (PD-1 monotherapy for those with PD-L1 expression at 50% threshold, and combination with chemotherapy for others with immunohistochemistry testing), and No PD-L1 testing (PD-1 combined with chemotherapy without immunohistochemistry testing). The model assumed 1000 patients per strategy, with each patient entering a unique clinical path prior to receiving treatment on the basis of PD-L1 test results. Clinical inputs were derived from clinical trials. Cost and utility parameters were obtained from the database and literature. One-way probabilistic sensitivity analyses (PSA) and six scenario analyses were used to test the model’s robustness.

Results

The study revealed a hierarchy of survival benefits across three strategies, with No PD-L1 testing demonstrating the most survival advantage, followed by PD-L1 testing (50%), and finally, PD-L1 testing (1%). The comparative analysis demonstrated that No PD-L1 testing significantly enhanced overall survival (OS) (HR 0.85, 95% CI 0.78–0.93), progression-free survival (HR 0.82, 95% CI 0.75–0.90), and progression-free2 survival (PFS2) (HR 0.91, 95% CI 0.83–0.99) when juxtaposed against PD-L1 testing (1%). However, these improvements were not as pronounced when compared with PD-L1 testing (50%), particularly in relation to PFS, PFS2, and OS. The cost-effectiveness analysis further unveiled incremental cost-utility ratios (ICUR), with No PD-L1 testing versus PD-L1 testing (50%) at $34,003 per quality-adjusted life year (QALY) and No PD-L1 testing versus PD-L1 testing (1%) at $34,804 per QALY. In parallel, the ICUR for PD-L1 testing (50%) versus PD-L1 testing (1%) stood at $35,713 per QALY. Remarkably, the PSA result under a willingness-to-pay (WTP) threshold of $10,144 per QALY, with a 100% probability, demonstrated PD-L1 testing (1%) as the most cost-effective option.

Conclusions

The survival benefits of PD-1 monotherapy for high expression with PD-L1 immunohistochemistry testing are inferior to those of PD-1 combined with chemotherapy without testing, but it is found to be more cost-effective at the WTP thresholds in China and holds great potential in increasing affordability and reducing the economic burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015;5(9):2892–911.

    PubMed  PubMed Central  Google Scholar 

  2. Zago G, Muller M, van den Heuvel M, Baas P. New targeted treatments for non-small-cell lung cancer - role of nivolumab. Biologics. 2016;10:103–17. https://doi.org/10.2147/btt.S87878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Marrone KA, Naidoo J, Brahmer JR. Immunotherapy for lung cancer: no longer an abstract concept. Semin Respir Crit Care Med. 2016;37(5):771–82. https://doi.org/10.1055/s-0036-1592298.

    Article  PubMed  Google Scholar 

  4. Hirsch FR, Suda K, Wiens J, Bunn PA Jr. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016;388(10048):1012–24. https://doi.org/10.1016/s0140-6736(16)31473-8.

    Article  PubMed  Google Scholar 

  5. Xiong W, Zhao Y, Du H, Guo X. Current status of immune checkpoint inhibitor immunotherapy for lung cancer. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.704336.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steven A, Fisher SA, Robinson BW. Immunotherapy for lung cancer. Respirology. 2016;21(5):821–33. https://doi.org/10.1111/resp.12789.

    Article  PubMed  Google Scholar 

  7. Brahmer JR, Govindan R, Anders RA, Antonia SJ, Sagorsky S, Davies MJ, et al. The Society for Immunotherapy of cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer. 2018;6(1):75. https://doi.org/10.1186/s40425-018-0382-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gd C Jr, Kudaba I, Wu Y-L, Lopes G, Kowalski DM, Turna HZ, et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non–small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥ 1% in the KEYNOTE-042 study. J Clin Oncol. 2021. https://doi.org/10.1200/jco.21.02885.

    Article  Google Scholar 

  9. Daud AI, Wolchok JD, Robert C, Hwu W-J, Weber JS, Ribas A, et al. Programmed death-ligand 1 expression and response to the anti–programmed death 1 antibody Pembrolizumab in melanoma. J Clin Oncol. 2016;34(34):4102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. European Medicines Agency Assessment Report - Keytruda. 2019. https://www.ema.europa.eu/en/documents/variation-report/keytruda-h-c-3820-ii-0060-epar-assessment-report-variation_en.pdf. (Accessed 29/03/2023).

  11. Lantuejoul S, Sound-Tsao M, Cooper WA, Girard N, Hirsch FR, Roden AC, et al. PD-L1 testing for lung cancer in 2019: perspective from the IASLC pathology committee. J Thorac Oncol. 2020;15(4):499–519.

    Article  PubMed  CAS  Google Scholar 

  12. Mino-Kenudson M, Le Stang N, Daigneault JB, Nicholson AG, Cooper WA, Roden AC, et al. The International Association for the Study of Lung Cancer Global Survey on programmed death-ligand 1 testing for NSCLC. J Thorac Oncol. 2021;16(4):686–96. https://doi.org/10.1016/j.jtho.2020.12.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xu HL, Jin. 2022 Chinese Society of Clinical Oncology (CSCO) NSCLC guidelines 2022.

  14. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Nonsmall cell lung cancer. Version 2.2023. 2023 February 17, 2023.

  15. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  PubMed  CAS  Google Scholar 

  16. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37(7):537–46. https://doi.org/10.1200/jco.18.00149.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20. https://doi.org/10.1016/s0140-6736(16)00561-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. https://doi.org/10.1158/1078-0432.Ccr-13-3271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Saxena P, Singh PK, Malik PS, Singh N. Immunotherapy alone or in combination with chemotherapy as first-line treatment of non-small cell lung cancer. Curr Treat Opt Oncol. 2020;21(8):69. https://doi.org/10.1007/s11864-020-00768-2.

    Article  Google Scholar 

  20. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30. https://doi.org/10.1016/s0140-6736(18)32409-7.

    Article  PubMed  CAS  Google Scholar 

  21. Wu Y-L, Zhang L, Fan Y, Zhou J, Zhang L, Zhou Q, et al. Randomized clinical trial of pembrolizumab vs chemotherapy for previously untreated Chinese patients with PD-L1-positive locally advanced or metastatic non–small-cell lung cancer: KEYNOTE-042 China study. Int J Cancer. 2021;148(9):2313–20. https://doi.org/10.1002/ijc.33399.

    Article  PubMed  CAS  Google Scholar 

  22. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  PubMed  CAS  Google Scholar 

  23. Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. J Clin Oncol. 2020;38(14):1505–17. https://doi.org/10.1200/jco.19.03136.

    Article  PubMed  CAS  Google Scholar 

  24. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51. https://doi.org/10.1056/NEJMoa1810865.

    Article  PubMed  CAS  Google Scholar 

  25. Paz-Ares L, Vicente D, Tafreshi A, Robinson A, Soto Parra H, Mazières J, et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. J Thorac Oncol. 2020;15(10):1657–69. https://doi.org/10.1016/j.jtho.2020.06.015.

    Article  PubMed  CAS  Google Scholar 

  26. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  PubMed  CAS  Google Scholar 

  27. Han B, Li K, Wang Q, Zhang L, Shi J, Wang Z, et al. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non–small cell lung cancer: the ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 2018;4(11):1569–75. https://doi.org/10.1001/jamaoncol.2018.3039.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kreke JE, Schaefer AJ, Roberts MS. Simulation and critical care modeling. Curr Opin Crit Care. 2004;10(5):395–8.

    Article  PubMed  Google Scholar 

  29. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M. Conceptualizing a model: a report of the ISPOR-SMDM modeling good research practices task force–2. Med Decis Making. 2012;32(5):678–89.

    Article  PubMed  Google Scholar 

  30. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices—overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force–1. Med Decis Making. 2012;32(5):667–77.

    Article  PubMed  Google Scholar 

  31. Brennan A, Chick SE, Davies R. A taxonomy of model structures for economic evaluation of health technologies. Health Econ. 2006;15(12):1295–310.

    Article  PubMed  Google Scholar 

  32. Davis S, Stevenson M, Tappenden P, Wailoo A. Cost-effectiveness modelling using patient-level simulation. National Institute for Health and Care Excellence (NICE); 2014.

  33. Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MM, Pechlivanoglou P. Microsimulation modeling for health decision sciences using R: a tutorial. Med Decis Making. 2018;38(3):400–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rutter CM, Zaslavsky AM, Feuer EJ. Dynamic microsimulation models for health outcomes: a review. Med Decis Making. 2011;31(1):10–8.

    Article  PubMed  Google Scholar 

  35. Liu GWJ, Wu J, et al. China guidelines for pharmacoeconomic evaluations 2020. Beijing: China Market Press; 2020.

    Google Scholar 

  36. Pichon-Riviere A, Drummond M, Palacios A, Garcia-Marti S, Augustovski F. Determining the efficiency path to universal health coverage: cost-effectiveness thresholds for 174 countries based on growth in life expectancy and health expenditures. Lancet Glob Health. 2023;11(6):e833–42. https://doi.org/10.1016/S2214-109X(23)00162-6.

    Article  PubMed  CAS  Google Scholar 

  37. Dongmei LIN, Shun LU. Chinese Expert Consensus on Standards of PD-L1 Immunohistochemistry testing for non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2020;23(9):733–40. https://doi.org/10.3779/j.issn.1009-3419.2020.101.43.

  38. Paces W, Ergon E, Bueche E, Young GD, Adisetiyo V, Luengo C, et al. A digital assay for programmed death-ligand 1 (22C3) quantification combined with immune cell recognition algorithms in non-small cell lung cancer. Sci Rep. 2022;12(1):9745. https://doi.org/10.1038/s41598-022-12697-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rui M, Fei Z, Wang Y, Zhang X, Ma A, Sun H, et al. Cost-effectiveness analysis of sintilimab+ chemotherapy versus camrelizumab+ chemotherapy for the treatment of first-line locally advanced or metastatic nonsquamous NSCLC in China. J Med Econ. 2022;25(1):618–29. https://doi.org/10.1080/13696998.2022.2071066.

    Article  PubMed  Google Scholar 

  40. Insinga RP, Vanness DJ, Feliciano JL, Vandormael K, Traore S, Burke T. Cost-effectiveness of pembrolizumab in combination with chemotherapy in the 1st line treatment of non-squamous NSCLC in the US. J Med Econ. 2018;21(12):1191–205. https://doi.org/10.1080/13696998.2018.1521416.

    Article  PubMed  Google Scholar 

  41. Huang M, Lou Y, Pellissier J, Burke T, Liu FX, Xu R, et al. Cost-effectiveness of pembrolizumab versus docetaxel for the treatment of previously treated PD-L1 positive advanced NSCLC patients in the United States. J Med Econ. 2017;20(2):140–50. https://doi.org/10.1080/13696998.2016.1230123.

    Article  PubMed  Google Scholar 

  42. Wang Y, Rui M, Guan X, Cao Y, Chen P. Cost-effectiveness analysis of abemaciclib plus fulvestrant in the second-line treatment of women with HR+/HER2–advanced or metastatic breast cancer: a US payer perspective. Front Med. 2021;8: 658747. https://doi.org/10.3389/fmed.2021.658747.

    Article  Google Scholar 

  43. 1 USD to CNY - Convert US dollars to Chinese Yuan Renminbi. 2023. https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=CNY. (Accessed 18 Mar 2023).

  44. MENET. MENET.com.cn. [database on the Internet]. Available from: https://www.menet.com.cn/. (Accessed 18 Mar, 2023).

  45. Yaoch. YAOZH.com [database on the Internet]. Available from: https://www.yaozh.com/. (Accessed: 18 Mar, 2023).

  46. Introduction of Keytruda® (non-small cell lung cancer) patient assistance project. https://api.papwx.cpah.net.cn/upload/document/filepath/202303/16789469567527.pdf. (Accessed 18 Mar 2023).

  47. Introduction of OPDIVO® (non-small cell lung cancer) patient assistance project. http://www.cfchina.org.cn/show.php?contentid=2213. (Accessed 18 Mar 2023).

  48. Shen Y, Wu B, Wang X, Zhu J. Health state utilities in patients with advanced non-small-cell lung cancer in China. J Comp Eff Res. 2018;7(5):443–52. https://doi.org/10.2217/cer-2017-0069.

    Article  PubMed  Google Scholar 

  49. Liu SY, Zhou Q, Yan HH, Gan B, Yang MY, Deng JY, et al. EP08.01-085 sintilimab versus pembrolizumab as monotherapy or in combination with chemotherapy for treatment naïve metastatic non-small cell lung cancer. J Thorac Oncol. 2022;17(9, Supplement):S381–2. https://doi.org/10.1016/j.jtho.2022.07.657.

    Article  Google Scholar 

  50. Liu S-YM, Zhou Q, Yan H-H, Bin G, Yang M-Y, Deng J-Y, et al. Sintilimab versus pembrolizumab in monotherapy or combination with chemotherapy as first-line therapy for advanced non–small cell lung cancer: results from phase 2, randomized clinical trial (CTONG1901). J ClinOncol. 2022;40(16_suppl):9032. https://doi.org/10.1200/JCO.2022.40.16_suppl.9032.

    Article  Google Scholar 

  51. Criss SD, Weaver DT, Sheehan DF, Lee RJ, Pandharipande PV, Kong CY. Effect of PD-L1 testing on the cost-effectiveness and budget impact of pembrolizumab for advanced urothelial carcinoma of the bladder in the United States. Urol Oncol. 2019;37(3):180.e11-180.e18. https://doi.org/10.1016/j.urolonc.2018.11.016.

    Article  PubMed  CAS  Google Scholar 

  52. Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22. https://doi.org/10.1016/j.jtho.2016.11.2228.

    Article  PubMed  Google Scholar 

  53. Tsao MS, Kerr KM, Kockx M, Beasley M-B, Borczuk AC, Botling J, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–11. https://doi.org/10.1016/j.jtho.2018.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yuan P, Guo C, Li Y, Jiang L, Liu Y, Liu X, et al. Consistency of PD-L1 immunohistochemical detection platforms in biopsy samples with advanced lung adenocarcinoma: a multicenter study. Chinese J Pathol. 2018;47(11):840–4. https://doi.org/10.3760/cma.j.issn.0529-5807.2018.11.005.

    Article  CAS  Google Scholar 

  55. Munari E, Zamboni G, Lunardi G, Marchionni L, Marconi M, Sommaggio M, et al. PD-L1 expression heterogeneity in non–small cell lung cancer: defining criteria for harmonization between biopsy specimens and whole sections. J Thorac Oncol. 2018;13(8):1113–20. https://doi.org/10.1016/j.jtho.2018.04.017.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Rui.

Ethics declarations

Conflict of Interest

Mingjun Rui, Yingcheng Wang, Yunfei Li, and Zhengyang Fei declare that they have no conflicts of interest that might be relevant to the content of this article.

Author Contributions

MR is the corresponding author. MR had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: all authors. Acquisition, analysis, or interpretation of data: MR, YW, and YL. Modeling: YW. Drafting of the manuscript: MR and YL. Critical revision of the manuscript for important intellectual content: YW, YL, and ZF. Statistical analysis: MR and YW.

Funding

This work has no funding.

Data Availability Statement

All data generated or analyzed during this study are included in this article and its supplementary materials.

Ethics Approval/Consent for Participation and Publication

Not applicable.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, M., Wang, Y., Li, Y. et al. Immunotherapy Guided by Immunohistochemistry PD-L1 Testing for Patients with NSCLC: A Microsimulation Model-Based Effectiveness and Cost-Effectiveness Analysis. BioDrugs 38, 157–170 (2024). https://doi.org/10.1007/s40259-023-00628-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-023-00628-z

Navigation