Skip to main content

Advertisement

Log in

Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Dimethylsufoxide (DMSO) being universally used as a cryoprotectant in clinical adoptive cell-therapy settings to treat hematological malignancies and solid tumors is a growing concern, largely due to its broad toxicities. Its use has been associated with significant clinical side effects—cardiovascular, neurological, gastrointestinal, and allergic—in patients receiving infusions of cell-therapy products. DMSO has also been associated with altered expression of natural killer (NK) and T-cell markers and their in vivo function, not to mention difficulties in scaling up DMSO-based cryoprotectants, which introduce manufacturing challenges for autologous and allogeneic cellular therapies, including chimeric antigen receptor (CAR)-T and CAR-NK cell therapies. Interest in developing alternatives to DMSO has resulted in the evaluation of a variety of sugars, proteins, polymers, amino acids, and other small molecules and osmolytes as well as modalities to efficiently enable cellular uptake of these cryoprotectants. However, the DMSO-free cryopreservation of NK and T cells remains difficult. They represent heterogeneous cell populations that are sensitive to freezing and thawing. As a result, clinical use of cryopreserved cell-therapy products has not moved past the use of DMSO. Here, we present the state of the art in the development and use of cryopreservation options that do not contain DMSO toward clinical solutions to enable the global deployment of safer adoptively transferred cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matosevic S. Viral and Nonviral Engineering of natural killer cells as emerging adoptive cancer immunotherapies [Internet]. J Immunol Res. 2018 [cited 2018 Oct 18]. https://www.hindawi.com/journals/jir/2018/4054815/. Accessed 8 Mar 2021.

  3. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017;25:1769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lupo KB, Matosevic S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers. 2019;11:769.

    Article  CAS  PubMed Central  Google Scholar 

  5. Creer MH, Lemas MV, Mathew AJ. Practical handbook of cell therapy cryopreservation. AABB Press; 2015.

    Google Scholar 

  6. Cell and Gene Therapy Insights | Applications and optimization of cryopreservation technologies to cellular therapeutics [Internet]. [cited 2019 Mar 10]. https://insights.bio/cell-and-gene-therapy-insights/journal/articles/applications-and-optimization-of-cryopreservation-technologies-to-cellular-therapeutics/. Accessed 5 Mar 2021.

  7. Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6:12–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41:187–96.

    Article  CAS  PubMed  Google Scholar 

  9. Meryman HT. Cryopreservation of living cells: principles and practice. Transfusion. 2007;47:935–45.

    Article  CAS  PubMed  Google Scholar 

  10. Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, et al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine. Future Med. 2020;15:1463–91.

    CAS  Google Scholar 

  11. Li R, Johnson R, Yu G, McKenna DH, Hubel A. Preservation of cell-based immunotherapies for clinical trials. Cytotherapy. 2019;21:943–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holthaus L, Lamp D, Gavrisan A, Sharma V, Ziegler A-G, Jastroch M, et al. CD4+ T cell activation, function, and metabolism are inhibited by low concentrations of DMSO. J Immunol Methods. 2018;463:54–60.

    Article  CAS  PubMed  Google Scholar 

  13. Madden PW, Pegg DE. Calculation of corneal endothelial-cell volume during the addition and removal of cryoprotective compounds. Cryo Lett. 1992;13:43–50.

    Google Scholar 

  14. Best BP. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 2015;18:422–36.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res. 1972;71:345–55.

    Article  CAS  PubMed  Google Scholar 

  16. Acker JP, McGann LE. Cell-cell contact affects membrane integrity after intracellular freezing. Cryobiology. 2000;40:54–63.

    Article  CAS  PubMed  Google Scholar 

  17. Acker JP, McGann LE. Membrane damage occurs during the formation of intracellular ice. Cryo Lett. 2001;22:241–54.

    CAS  Google Scholar 

  18. Stoll C, Wolkers WF. Membrane stability during biopreservation of blood cells. Transfus Med Hemother. 2011;38:89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gurruchaga H, Saenz del Burgo L, Hernandez RM, Orive G, Selden C, Fuller B, et al. Advances in the slow freezing cryopreservation of microencapsulated cells. JControl Release. 2018;281:119–38.

    Article  CAS  Google Scholar 

  20. Baboo J, Kilbride P, Delahaye M, Milne S, Fonseca F, Blanco M, et al. The impact of varying cooling and thawing rates on the quality of cryopreserved human peripheral blood T cells. Sci Rep. 2019;9:3417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jena S, Aksan A. Effect of high DMSO concentration on albumin during freezing and vitrification. RSC Adv. 2017;7:43611–20.

    Article  CAS  Google Scholar 

  22. Baust JM. Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preserv Technol. 2002;1:17–31.

    Article  CAS  Google Scholar 

  23. Chaytor JL, Tokarew JM, Wu LK, Leclère M, Tam RY, Capicciotti CJ, et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology. 2012;22:123–33.

    Article  CAS  PubMed  Google Scholar 

  24. John Morris G, Acton E, Murray BJ, Fonseca F. Freezing injury: the special case of the sperm cell. Cryobiology. 2012;64:71–80.

    Article  CAS  PubMed  Google Scholar 

  25. Fahy GM, Wowk B. Principles of cryopreservation by vitrification. Methods Mol Biol. 2015;1257:21–82.

    Article  CAS  PubMed  Google Scholar 

  26. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–26.

    Article  CAS  PubMed  Google Scholar 

  27. Morris GJ, Acton E. Controlled ice nucleation in cryopreservation–a review. Cryobiology. 2013;66:85–92.

    Article  PubMed  CAS  Google Scholar 

  28. Diller KR. Intracellular freezing: effect of extracellular supercooling. Cryobiology. 1975;12:480–5.

    Article  CAS  PubMed  Google Scholar 

  29. Prickett RC, Marquez-Curtis LA, Elliott JAW, McGann LE. Effect of supercooling and cell volume on intracellular ice formation. Cryobiology. 2015;70:156–63.

    Article  CAS  PubMed  Google Scholar 

  30. Petersen A, Schneider H, Rau G, Glasmacher B. A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Cryobiology. 2006;53:248–57.

    Article  CAS  PubMed  Google Scholar 

  31. Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters. 2004;25:375–88.

    CAS  PubMed  Google Scholar 

  32. Wowk B. How cryoprotectants work. Cryonics. 2007;28:3–7.

    Google Scholar 

  33. Jaskiewicz JJ, Sevenler D, Swei AA, Widmer G, Toner M, Tzipori S, et al. Cryopreservation of infectious Cryptosporidium parvum oocysts achieved through vitrification using high aspect ratio specimen containers. Sci Rep. 2020;10:11711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sieme H, Oldenhof H, Wolkers WF. Mode of action of cryoprotectants for sperm preservation. Anim Reprod Sci. 2016;169:2–5.

    Article  CAS  PubMed  Google Scholar 

  35. Oldenhof H, Gojowsky M, Wang S, Henke S, Yu C, Rohn K, et al. Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod. 2013;88:68.

    Article  PubMed  CAS  Google Scholar 

  36. Stolzing A, Naaldijk Y, Fedorova V, Sethe S. Hydroxyethylstarch in cryopreservation—mechanisms, benefits and problems. Transfus Apher Sci. 2012;46:137–47.

    Article  CAS  PubMed  Google Scholar 

  37. Life in the Frozen State [Internet]. CRC Press. [cited 2019 Mar 8]. https://www.crcpress.com/Life-in-the-Frozen-State/Fuller-Lane-Benson/p/book/9780415247009. Accessed 7 June 2021.

  38. Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a key element in the successful delivery of cell-based therapies—a review. Front Med [Internet]. 2020. https://doi.org/10.3389/fmed.2020.592242/full (Frontiers; 2020 [cited 2021 Mar 8];7).

    Article  Google Scholar 

  39. Han Z, Bischof JC. Critical cooling and warming rates as a function of CPA concentration. CryoLetters. 2020;41:185–93.

    PubMed  Google Scholar 

  40. Berejnov V, Husseini NS, Alsaied OA, Thorne RE. Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions. J Appl Cryst. 2006;39:244–51.

    Article  CAS  Google Scholar 

  41. Warkentin M, Stanislavskaia V, Hammes K, Thorne RE. Cryocrystallography in capillaries: critical glycerol concentrations and cooling rates. J Appl Cryst. 2008;41:791–7.

    Article  CAS  Google Scholar 

  42. Farrant J, Knight SC, Morris GJ. Use of different cooling rates during freezing to separate populations of human peripheral blood lymphocytes. Cryobiology. 1972;9:516–25.

    Article  CAS  PubMed  Google Scholar 

  43. Morris C, de Wreede L, Scholten M, Brand R, van Biezen A, Sureda A, et al. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion. 2014;54:2514–22.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Z, Richter SM, Gates BD, Grieme TA. Safety concerns in a pharmaceutical manufacturing process using dimethyl sulfoxide (DMSO) as a solvent. Org Process Res Dev. 2012;16:1994–2000.

    Article  CAS  Google Scholar 

  45. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014;28:1317–30.

    Article  CAS  PubMed  Google Scholar 

  46. Bekkem A, Selby G, Chakrabarty JH. Retrospective analysis of intravenous DMSO toxicity in transplant patients. Biol Blood Marrow Transplant. 2013;19:S313.

    Article  Google Scholar 

  47. Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014;49:469–76.

    Article  CAS  PubMed  Google Scholar 

  48. Martino M, Morabito F, Messina G, Irrera G, Pucci G, Iacopino P. Fractionated infusions of cryopreserved stem cells may prevent DMSO-induced major cardiac complications in graft recipients. Haematologica. 1996;81:59–61.

    CAS  PubMed  Google Scholar 

  49. Ruiz-Delgado GJ, Mancías-Guerra C, Tamez-Gómez EL, Rodríguez-Romo LN, López-Otero A, Hernández-Arizpe A, et al. Dimethyl sulfoxide-induced toxicity in cord blood stem cell transplantation: report of three cases and review of the literature. Acta Haematol. 2009;122:1–5.

    Article  PubMed  Google Scholar 

  50. Horacek JM, Jebavy L, Jakl M, Zak P, Mericka P, Maly J. Cardiovascular changes associated with infusion of hematopoietic cell grafts in oncohematological patients—impact of cryopreservation with dimethylsulfoxide. Exp Oncol. 2009;31:121–2.

    CAS  PubMed  Google Scholar 

  51. Donmez A, Tombuloglu M, Gungor A, Soyer N, Saydam G, Cagirgan S. Clinical side effects during peripheral blood progenitor cell infusion. Transfus Apher Sci. 2007;36:95–101.

    Article  PubMed  Google Scholar 

  52. Windrum P, Morris TCM. Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone Marrow Transplant. 2003;31:315.

    Article  CAS  PubMed  Google Scholar 

  53. Bauwens D, Hantson P, Laterre P-F, Michaux L, Latinne D, De Tourtchaninoff M, et al. Recurrent seizure and sustained encephalopathy associated with dimethylsulfoxide-preserved stem cell infusion. Leuk Lymphoma. 2005;46:1671–4.

    Article  CAS  PubMed  Google Scholar 

  54. Abdelkefi A, Lakhal A, Moojat N, Hamed LB, Fekih J, Ladeb S, et al. Severe neurotoxicity associated with dimethyl sulphoxide following PBSCT. Bone Marrow Transplant. 2009;44:323–4.

    Article  CAS  PubMed  Google Scholar 

  55. Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull. 2002;25:1600–3.

    Article  PubMed  Google Scholar 

  56. Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111:10453–60.

    Article  CAS  PubMed  Google Scholar 

  57. Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, et al. DMSO represses inflammatory cytokine production from human blood cells and reduces autoimmune arthritis. PLoS One [Internet]. 2016 [cited 2019 Mar 10];11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816398/.

  58. Yi X, Liu M, Luo Q, Zhuo H, Cao H, Wang J, et al. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio. 2017;7:485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chinnadurai R, Garcia MA, Sakurai Y, Lam WA, Kirk AD, Galipeau J, et al. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Reports. 2014;3:60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Iwatani M, Ikegami K, Kremenska Y, Hattori N, Tanaka S, Yagi S, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24:2549–56.

    Article  CAS  PubMed  Google Scholar 

  61. Tunçer S, Gurbanov R, Sheraj I, Solel E, Esenturk O, Banerjee S. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci Rep. 2018;8:14828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cruz CR, Hanley PJ, Liu H, Torrano V, Lin Y-F, Arce JA, et al. Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy. 2010;12:743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yáñez L, Sánchez-Escamilla M, Perales M-A. CAR T Cell toxicity: current management and future directions. Hemasphere [Internet]. 2019 [cited 2021 Mar 8];3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746032/. Accessed 5 Mar 2021.

  64. Masson MJ, Carpenter LD, Graf ML, Pohl LR. Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology. 2008;48:889–97.

    Article  CAS  PubMed  Google Scholar 

  65. Tian Y, Zhang X, Yu B, Bai Y, Guan L, Teng S, et al. Case-based thermal safety evaluation on a pharmaceutical process using dimethyl sulfoxide as a solvent. Org Process Res Dev. 2020;24:2927–34.

    Article  CAS  Google Scholar 

  66. Iyer RK, Bowles PA, Kim H, Dulgar-Tulloch A. Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front Med (Lausanne) [Internet]. 2018 [cited 2019 Mar 8];5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974219/. Accessed 7 June 2021.

  67. Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep. 2019;9:4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guthrie HD, Liu J, Critser JK. Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa1. Biol Reprod. 2002;67:1811–6.

    Article  CAS  PubMed  Google Scholar 

  69. Lawson A, Mukherjee IN, Sambanis A. Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues. Cryobiology. 2012;64:1–11.

    Article  CAS  PubMed  Google Scholar 

  70. Davidson AF, Glasscock C, McClanahan DR, Benson JD, Higgins AZ. Toxicity minimized cryoprotectant addition and removal procedures for adherent endothelial cells. PLoS One [Internet]. 2015 [cited 2019 Mar 10];10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659675/. Accessed 10 June 2021.

  71. Sui X, Wen C, Yang J, Guo H, Zhao W, Li Q, et al. Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater Sci Eng. 2019;5:1083–91.

    Article  CAS  PubMed  Google Scholar 

  72. Campbell A, Brieva T, Raviv L, Rowley J, Niss K, Brandwein H, et al. Concise review: process development considerations for cell therapy. Stem Cells Transl Med. 2015;4:1155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tostoes R, Dodgson JR, Weil B, Gerontas S, Mason C, Veraitch F. A novel filtration system for point of care washing of cellular therapy products. J Tissue Eng Regen Med. 2017;11:3157–67.

    Article  CAS  PubMed  Google Scholar 

  74. Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep [Internet]. 2016 [cited 2019 Mar 10];6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810524/. Accessed 8 Mar 2021.

  75. Si W, Zheng P, Li Y, Dinnyes A, Ji W. Effect of glycerol and dimethyl sulfoxide on cryopreservation of rhesus monkey (Macaca mulatta) sperm. Am J Primatol. 2004;62:301–6.

    Article  CAS  PubMed  Google Scholar 

  76. Villaverde AISB, Fioratti EG, Penitenti M, Ikoma MRV, Tsunemi MH, Papa FO, et al. Cryoprotective effect of different glycerol concentrations on domestic cat spermatozoa. Theriogenology. 2013;80:730–7.

    Article  CAS  PubMed  Google Scholar 

  77. Rogers SC, Dosier LB, McMahon TJ, Zhu H, Timm D, Zhang H, et al. Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS ONE. 2018;13:e0209201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sibinga CS, Das PC, Meryman HT, editors. Cryopreservation and low temperature biology in blood transfusion: Proceedings of the Fourteenth International Symposium on Blood Transfusion, Groningen 1989, organised by the Red Cross Blood Bank Groningen-Drenthe [Internet]. Springer US; 1990 [cited 2019 Mar 10]. https://www.springer.com/us/book/9780792309086. Accessed 8 Mar 2021.

  79. Hay MA, Goodrowe KL. Comparative cryopreservation and capacitation of spermatozoa from epididymides and vasa deferentia of the domestic cat. J Reprod Fertil Suppl. 1993;47:297–305.

    CAS  PubMed  Google Scholar 

  80. Lusianti RE, Benson JD, Acker JP, Higgins AZ. Rapid removal of glycerol from frozen-thawed red blood cells. Biotechnol Prog. 2013;29:609–20.

    Article  CAS  PubMed  Google Scholar 

  81. Capicciotti CJ, Kurach JDR, Turner TR, Mancini RS, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci Rep. 2015;5:9692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pan C, Yu S, Zhang P, Wang B, Zhu Z, Liu Y, et al. Effect of sucrose on cryopreservation of pig spermatogonial stem cells. J Integr Agric. 2017;16:1120–9.

    Article  CAS  Google Scholar 

  83. Rumsey SC, Galeano NF, Arad Y, Deckelbaum RJ. Cryopreservation with sucrose maintains normal physical and biological properties of human plasma low density lipoproteins. J Lipid Res. 1992;33:1551–61.

    Article  CAS  PubMed  Google Scholar 

  84. Hossain AM, Osuamkpe CO. Sole use of sucrose in human sperm cryopreservation. Arch Androl. 2007;53:99–103.

    Article  CAS  PubMed  Google Scholar 

  85. Pellerin-Mendes C, Million L, Marchand-Arvier M, Labrude P, Vigneron C. In vitro study of the protective effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen. Cryobiology. 1997;35:173–86.

    Article  CAS  PubMed  Google Scholar 

  86. Katkov II, Kan NG, Cimadamore F, Nelson B, Snyder EY, Terskikh AV. DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells [Internet]. Stem Cells Int. 2011 [cited 2019 Mar 10]. https://www.hindawi.com/journals/sci/2011/981606/. Accessed 8 Mar 2021.

  87. Gook DA, Edgar DH, Stern C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propanediol. Hum Reprod. 1999;14:2061–8.

    Article  CAS  PubMed  Google Scholar 

  88. Sun H, Glasmacher B, Hofmann N. Compatible solutes improve cryopreservation of human endothelial cells. Cryo Lett. 2012;33:485–93.

    CAS  Google Scholar 

  89. Choi JK, Assal RE, Ng N, Ginsburg E, Maas RL, Anchan RM, et al. Bio-inspired solute enables preservation of human oocytes using minimum volume vitrification. J Tissue Eng Regen Med. 2018;12:e142–9.

    Article  CAS  PubMed  Google Scholar 

  90. Grein TA, Freimark D, Weber C, Hudel K, Wallrapp C, Czermak P. Alternatives to dimethylsulfoxide for serum-free cryopreservation of human mesenchymal stem cells. Int J Artif Organs. 2010;33:370–80.

    Article  CAS  PubMed  Google Scholar 

  91. Bailey TL, Wang M, Solocinski J, Nathan BP, Chakraborty N, Menze MA. Protective effects of osmolytes in cryopreserving adherent neuroblastoma (Neuro-2a) cells. Cryobiology. 2015;71:472–80.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang L, Xue X, Yan J, Yan L-Y, Jin X-H, Zhu X-H, et al. L-proline: a highly effective cryoprotectant for mouse oocyte vitrification. Sci Rep. 2016;6:26326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brodthagen UA, Armitage WJ, Parmar N. Platelet cryopreservation with glycerol, dextran, and mannitol: recovery of 5-hydroxytryptamine uptake and hypotonic stress response. Cryobiology. 1985;22:1–9.

    Article  CAS  PubMed  Google Scholar 

  94. Deller RC, Vatish M, Mitchell DA, Gibson MI. Glycerol-free cryopreservation of red blood cells enabled by ice-recrystallization-inhibiting polymers. ACS Biomater Sci Eng. 2015;1:789–94.

    Article  CAS  PubMed  Google Scholar 

  95. Naaldijk Y, Johnson AA, Friedrich-Stöckigt A, Stolzing A. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch–based cryoprotectants. BMC Biotechnol [Internet]. 2016 [cited 2019 Mar 10];16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131400/. Accessed 10 Mar 2021.

  96. Graham JE, Meola DM, Kini NR, Hoffman AM. Comparison of the effects of glycerol, dimethyl sulfoxide, and hydroxyethyl starch solutions for cryopreservation of avian red blood cells. Am J Vet Res. 2015;76:487–93.

    Article  CAS  PubMed  Google Scholar 

  97. Martinetti D, Colarossi C, Buccheri S, Denti G, Memeo L, Vicari L. Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomed Rep. 2017;6:314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ntai A, La Spada A, De Blasio P, Biunno I. Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res. 2018;31:102–12.

    Article  CAS  PubMed  Google Scholar 

  99. Wu CF, Tsung HC, Zhang WJ, Wang Y, Lu JH, Tang ZY, et al. Improved cryopreservation of human embryonic stem cells with trehalose. Reprod Biomed Online. 2005;11:733–9.

    Article  PubMed  Google Scholar 

  100. Matsumura K, Hayashi F, Nagashima T, Hyon SH. Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed. 2013;24:1484–97.

    Article  CAS  PubMed  Google Scholar 

  101. Jin OS, Lee JH, Shin YC, Lee EJ, Lee JJ, Matsumura K, et al. Cryoprotection of fibroblasts by carboxylated poly-L-lysine upon repeated freeze/thaw cycles [Internet]. 2016 [cited 2019 Mar 10]. https://www.ingentaconnect.com/contentone/cryo/cryo/2016/00000037/00000004/art00009. Accessed 6 Mar 2021.

  102. Li Y, Si W, Zhang X, Dinnyes A, Ji W. Effect of amino acids on cryopreservation of cynomolgus monkey (Macaca fascicularis) sperm. Am J Primatol. 2003;59:159–65.

    Article  CAS  PubMed  Google Scholar 

  103. He S, Woods LC III. Effects of glycine and alanine on short-term storage and cryopreservation of striped bass (Morone saxatilis) spermatozoa. Cryobiology. 2003;46:17–25.

    Article  CAS  PubMed  Google Scholar 

  104. Cao X-Y, Rose J, Wang S-Y, Liu Y, Zhao M, Xing M-J, et al. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage. Sci Rep. 2016;6:37262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pollock K, Samsonraj RM, Dudakovic A, Thaler R, Stumbras A, McKenna DH, et al. Improved post-thaw function and epigenetic changes in mesenchymal stromal cells cryopreserved using multicomponent osmolyte solutions. Stem Cells Dev. 2017;26:828–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Klein W, Weber MHW, Marahiel MA. Cold shock response of bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol. 1999;181:5341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schulz JC, Germann A, Kemp-Kamke B, Mazzotta A, von Briesen H, Zimmermann H. Towards a xeno-free and fully chemically defined cryopreservation medium for maintaining viability, recovery, and antigen-specific functionality of PBMC during long-term storage. J Immunol Methods. 2012;382:24–31.

    Article  CAS  PubMed  Google Scholar 

  108. Li R, Hornberger K, Dutton JR, Hubel A. Cryopreservation of human iPS Cell Aggregates in a DMSO-free solution—an optimization and comparative study. Front Bioeng Biotechnol [Internet]. 2020 [cited 2021 Mar 9];8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987262/. Accessed 6 Mar 2021.

  109. Hreinsson J, Zhang P, Swahn ML, Hultenby K, Hovatta O. Cryopreservation of follicles in human ovarian cortical tissue. Comparison of serum and human serum albumin in the cryoprotectant solutions. Hum Reprod. 2003;18:2420–8.

    Article  CAS  PubMed  Google Scholar 

  110. Worsham DN, Reems J-A, Szczepiorkowski ZM, McKenna DH, Leemhuis T, Mathew AJ, et al. Clinical methods of cryopreservation for donor lymphocyte infusions vary in their ability to preserve functional T-cell subpopulations. Transfusion. 2017;57:1555–65.

    Article  CAS  PubMed  Google Scholar 

  111. Pi C-H, Hornberger K, Dosa P, Hubel A. Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants. Cytotherapy. 2020;22:291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Claassen DA, Desler MM, Rizzino A. ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev. 2009;76:722–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peh GSL, Adnan K, George BL, Ang H-P, Seah X-Y, Tan DT, et al. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S. An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat Protoc. 2010;5:588–94.

    Article  CAS  PubMed  Google Scholar 

  115. Deller RC, Vatish M, Mitchell DA, Gibson MI. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat Commun. 2014;5:3244.

    Article  PubMed  CAS  Google Scholar 

  116. Capicciotti CJ, Mancini RS, Turner TR, Koyama T, Alteen MG, Doshi M, et al. O-Aryl-glycoside ice recrystallization inhibitors as novel cryoprotectants: a structure-function study. ACS Omega. 2016;1:656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Briard JG, Jahan S, Chandran P, Allan D, Pineault N, Ben RN. Small-molecule ice recrystallization inhibitors improve the post-thaw function of hematopoietic stem and progenitor cells. ACS Omega. 2016;1:1010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Six KR, Lyssens S, Devloo R, Compernolle V, Feys HB. The ice recrystallization inhibitor polyvinyl alcohol does not improve platelet cryopreservation. Transfusion. 2019;59:3029–31.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Matsumura K, Hayashi F, Nagashima T, Rajan R, Hyon S-H. Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR. Commun Mater. 2021;2:1–12.

    Article  Google Scholar 

  120. Graham B, Bailey TL, Healey JRJ, Marcellini M, Deville S, Gibson MI. Polyproline as a minimal antifreeze protein mimic that enhances the cryopreservation of cell monolayers. Angew Chem Int Ed Engl. 2017;56:15941–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Biggs CI, Bailey TL, Graham B, Stubbs C, Fayter A, Gibson MI. Polymer mimics of biomacromolecular antifreezes. Nat Communi. 2017;8:1546.

    Article  CAS  Google Scholar 

  122. Zhang C, Zhou Y, Zhang L, Wu L, Chen Y, Xie D, et al. Hydrogel cryopreservation system: an effective method for cell storage. Int J Mol Sci [Internet]. 2018 [cited 2021 Mar 9];19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274795/. Accessed 1 Mar 2021.

  123. Cao K, Shen L, Guo X, Wang K, Hu X, Ouyang X, et al. Hydrogel microfiber encapsulation enhances cryopreservation of human red blood cells with low concentrations of glycerol. Biopreserv Biobank. 2020;18:228–34.

    Article  CAS  PubMed  Google Scholar 

  124. Khetan S, Corey O. Maintenance of stem cell viability and differentiation potential following cryopreservation within 3-dimensional hyaluronic acid hydrogels. Cryobiology. 2019;90:83–8.

    Article  CAS  PubMed  Google Scholar 

  125. Cheng Y, Yu Y, Zhang Y, Zhao G, Zhao Y. Cold-responsive nanocapsules enable the sole-cryoprotectant-trehalose cryopreservation of β cell-laden hydrogels for diabetes treatment. Small. 2019;15:e1904290.

    Article  PubMed  CAS  Google Scholar 

  126. Zhang M, Oldenhof H, Sieme H, Wolkers WF. Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim Biophys Acta. 2016;1858:1400–9.

    Article  CAS  PubMed  Google Scholar 

  127. Pollock K, Yu G, Moller-Trane R, Koran M, Dosa PI, McKenna DH, et al. Combinations of osmolytes, including monosaccharides, disaccharides, and sugar alcohols act in concert during cryopreservation to improve mesenchymal stromal cell survival. Tissue Eng Part C Methods. 2016;22:999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Porsche AM, Körber C, Englich S, Hartmann U, Rau G. Determination of the permeability of human lymphocytes with a microscope diffusion chamber. Cryobiology. 1986;23:302–16.

    Article  CAS  PubMed  Google Scholar 

  129. Shu Z, Hughes SM, Fang C, Huang J, Fu B, Zhao G, et al. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology. 2016;72:93–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Song YS, Moon S, Hulli L, Hasan SK, Kayaalp E, Demirci U. Microfluidics for cryopreservation. Lab Chip. 2009;9:1874–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zheng Y, Zhao G, Zhang Y, Gao R. On-chip loading and unloading of cryoprotectants facilitate cell cryopreservation by rapid freezing. Sens Actuators B Chem. 2018;255:647–56.

    Article  CAS  Google Scholar 

  132. Heo YS, Lee H-J, Hassell BA, Irimia D, Toth TL, Elmoazzen H, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip. 2011;11:3530–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rahman SM, Strüssmann CA, Suzuki T, Watanabe M. Electroporation enhances permeation of cryoprotectant (dimethyl sulfoxide) into Japanese whiting (Sillago japonica) embryos. Theriogenology. 2013;79:853–8.

    Article  CAS  PubMed  Google Scholar 

  134. Wei X, Weng L, Abazari A, Andregg M. 57. A transmembrane mega highway for cryoprotective agent delivery via self-assembling organic nanopores with tunable function. Cryobiology. 2015;71:179.

    Article  Google Scholar 

  135. Zhang M, Oldenhof H, Sieme H, Wolkers WF. Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells. Biotechnol Prog. 2017;33:229–35.

    Article  CAS  PubMed  Google Scholar 

  136. Kato Y, Miyauchi T, Abe Y, Kojić D, Tanaka M, Chikazawa N, et al. Unprecedented cell-selection using ultra-quick freezing combined with aquaporin expression. PLoS ONE. 2014;9:e87644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Tanghe A, Dijck PV, Colavizza D, Thevelein JM. Aquaporin-Mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Appl Environ Microbiol. 2004;70:3377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces. 2015;7:5017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang Y, Wang H, Stewart S, Jiang B, Ou W, Zhao G, et al. Cold-responsive nanoparticle enables intracellular delivery and rapid release of trehalose for organic-solvent-free cryopreservation. Nano Lett. 2019;19:9051–61.

    Article  CAS  PubMed  Google Scholar 

  140. Yao X, Jovevski JJ, Todd MF, Xu R, Li Y, Wang J, et al. Nanoparticle‐mediated intracellular protection of natural killer cells avoids cryoinjury and retains potent antitumor functions. Adv Sci (Weinh) [Internet]. 2020 [cited 2020 Sep 29];7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201255/. Accessed 7 May 2021.

  141. Du T, Chao L, Zhao S, Chi L, Li D, Shen Y, et al. Successful cryopreservation of whole sheep ovary by using DMSO-free cryoprotectant. J Assist Reprod Genet. 2015;32:1267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Shin T, Fukushima M, Sato R, Nishio K, Yagi H, Arai G, et al. Vitrification using dimethyl sulfoxide free cryoprotectant as a cryopreservation method for fertility preservation of immature mouse testicular tissue. JCO. 2015;33:e20672–e20672.

    Article  Google Scholar 

  143. Shivakumar SB, Bharti D, Subbarao RB, Jang S-J, Park J-S, Ullah I, et al. DMSO- and serum-free cryopreservation of Wharton’s jelly tissue isolated from human umbilical cord. J Cell Biochem. 2016;117:2397–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rogulska O, Petrenko Y, Petrenko A. DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology. 2017;69:265–76.

    Article  CAS  PubMed  Google Scholar 

  145. Lo Y-J, Pan Y-H, Lin C-Y, Chang W-J, Huang H-M. Static magnetic field increases survival rate of thawed RBCs frozen in DMSO-free solution. J Med Biol Eng. 2017;37:157–61.

    Article  Google Scholar 

  146. Assal RE, Guven S, Gurkan UA, Gozen I, Shafiee H, Dalbeyber S, et al. Bio-inspired Cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv Mater. 2014;26:5815–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Hagbard L, Ericsson J, Karlsson C, Kallur T. Efficient cryopreservation of human ES and iPS cells in a chemically defined, cGMP produced, serum-, xeno-, and DMSO-free freezing medium. Cytotherapy. 2014;16:S98.

    Article  Google Scholar 

  148. Wessman P, Håkansson S, Leifer K, Rubino S. Formulations for freeze-drying of bacteria and their influence on cell survival. J Vis Exp [Internet]. 2013 [cited 2019 Jan 7]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846756/. Accessed 1 Mar 2021.

  149. Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001;42:79–87.

    Article  CAS  PubMed  Google Scholar 

  150. He H, Liu B, Hua Z, Li C, Wu Z. Intracellular trehalose improves the survival of human red blood cells by freeze-drying. Front Energy Power Eng China. 2007;1:120–4.

    Article  Google Scholar 

  151. Natan D, Nagler A, Arav A. Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One. 2009;4:e5240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Zhang S, Qian H, Wang Z, Fan J, Zhou Q, Chen G, et al. Preliminary study on the freeze-drying of human bone marrow-derived mesenchymal stem cells. J Zhejiang Univ Sci B. 2010;11:889–94.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep. 2017;7:6198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Stewart S, He X. Intracellular delivery of trehalose for cell banking. Langmuir. 2019;35:7414–22.

    Article  CAS  PubMed  Google Scholar 

  155. Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. PNAS Natl Acad Sci. 2012;109:20859–64.

    Article  CAS  Google Scholar 

  156. Saucedo AL, Hernández-Domínguez EE, de Luna-Valdez LA, Guevara-García AA, Escobedo-Moratilla A, Bojorquéz-Velázquez E, et al. Insights on structure and function of a late embryogenesis abundant protein from Amaranthus cruentus: an intrinsically disordered protein involved in protection against desiccation, oxidant conditions, and osmotic stress. Front Plant Sci [Internet]. 2017. https://doi.org/10.3389/fpls.2017.00497/full (Frontiers; 2017 [cited 2021 Mar 9];8).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol. 2011;73:115–34.

    Article  CAS  PubMed  Google Scholar 

  158. Klingemann H. Challenges of cancer therapy with natural killer cells. Cytotherapy. 2015;17:245–9.

    Article  CAS  PubMed  Google Scholar 

  159. Lugthart G, van Ostaijen-ten Dam MM, van Tol MJD, Lankester AC, Schilham MW. CD56(dim)CD16 NK cell phenotype can be induced by cryopreservation. Blood. 2015;125:1842–3.

    Article  CAS  PubMed  Google Scholar 

  160. Berg M, Lundqvist A, McCoy P, Samsel L, Fan Y, Tawab A, et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Holubova M, Miklikova M, Leba M, Georgiev D, Jindra P, Caprnda M, et al. Cryopreserved NK cells in the treatment of haematological malignancies: preclinical study. J Cancer Res Clin Oncol. 2016;142:2561–7.

    Article  CAS  PubMed  Google Scholar 

  162. Mata MM, Mahmood F, Sowell RT, Baum LL. Effects of cryopreservation on effector cells for antibody dependent cell-mediated cytotoxicity (ADCC) and natural killer cell (NK) activity in 51Cr-release and CD107a assays. J Immunol Methods. 2014;406:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012;14:1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Miller JS, Rooney CM, Curtsinger J, McElmurry R, McCullar V, Verneris MR, et al. Expansion and homing of adoptively transferred human NK cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy. Biol Blood Marrow Transplant. 2014;20:1252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mark C, Czerwinski T, Roessner S, Mainka A, Hörsch F, Heublein L, et al. Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells. Nat Commun. 2020;11:5224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Torelli GF, Rozera C, Santodonato L, Peragine N, D’Agostino G, Montefiore E, et al. A good manufacturing practice method to ex vivo expand natural killer cells for clinical use. Blood Transfus. 2015;13:464–71.

    PubMed  PubMed Central  Google Scholar 

  167. Domogala A, Madrigal JA, Saudemont A. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34(+) cells. Cytotherapy. 2016;18:754–9.

    Article  CAS  PubMed  Google Scholar 

  168. Pasley S, Zylberberg C, Matosevic S. Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media. Immunol Lett. 2017;192:35–41.

    Article  CAS  PubMed  Google Scholar 

  169. Assal RE, Abou‐Elkacem L, Tocchio A, Pasley S, Matosevic S, Kaplan DL, et al. Bioinspired preservation of natural killer cells for cancer immunotherapy. Adv Sci. 2019;6:1802045.

  170. Sutlu T, Nyström S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum Gene Ther. 2012;23:1090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li K, Donaldson B, Young V, Ward V, Jackson C, Baird M, et al. Adoptive cell therapy with CD4+ T helper 1 cells and CD8+ cytotoxic T cells enhances complete rejection of an established tumour, leading to generation of endogenous memory responses to non-targeted tumour epitopes. Clin Transl Immunology. 2017;6:e160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol. 2018;84:75–86.

    Article  CAS  PubMed  Google Scholar 

  173. Furlan SN, Singh K, Lopez C, Tkachev V, Hunt DJ, Hibbard J, et al. IL-2 enhances ex vivo–expanded regulatory T-cell persistence after adoptive transfer. Blood Adv. 2020;4:1594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Duffy SS, Keating BA, Moalem-Taylor G. Adoptive transfer of regulatory T cells as a promising immunotherapy for the treatment of multiple sclerosis. Front Neurosci [Internet]. 2019;10:15. https://doi.org/10.3389/fnins.2019.01107/full (Frontiers; 2019 [cited 2021 May 5]).

    Article  Google Scholar 

  175. Venkataraman M, Westerman MP. Susceptibility of human T cells, T-cell subsets, and B cells to cryopreservation. Cryobiology. 1986;23:199–208.

    Article  CAS  PubMed  Google Scholar 

  176. Angel S, von Briesen H, Oh Y-J, Baller MK, Zimmermann H, Germann A. Toward optimal cryopreservation and storage for achievement of high cell recovery and maintenance of cell viability and T cell functionality. Biopreserv Biobank. 2016;14:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Golab K, Leveson-Gower D, Wang X-J, Grzanka J, Marek-Trzonkowska N, Krzystyniak A, et al. Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol. 2013;16:371–5.

    Article  CAS  PubMed  Google Scholar 

  178. Florek M, Schneidawind D, Pierini A, Baker J, Armstrong R, Pan Y, et al. Freeze and thaw of CD4+CD25+Foxp3+ regulatory T cells results in loss of CD62L expression and a reduced capacity to protect against graft-versus-host disease. PLoS ONE. 2015;10:e0145763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Sattui S, de la Flor C, Sanchez C, Lewis D, Lopez G, Rizo-Patrón E, et al. Cryopreservation modulates the detection of regulatory T cell markers. Cytometry B Clin Cytom. 2012;82:54–8.

    Article  PubMed  CAS  Google Scholar 

  180. Hallak GJ, Wilkinson JH. Membrane permeability in normal human lymphocytes and lymphocytes from patients with chronic lymphatic leukaemia. Clin Chim Acta. 1976;69:341–9.

    Article  CAS  PubMed  Google Scholar 

  181. Kreher CR, Dittrich MT, Guerkov R, Boehm BO, Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods. 2003;278:79–93.

    Article  CAS  PubMed  Google Scholar 

  182. Campbell DE, Tustin NB, Riedel E, Tustin R, Taylor J, Murray J, et al. Cryopreservation decreases receptor PD-1 and Ligand PD-L1 coinhibitory expression on peripheral blood mononuclear cell-derived T cells and monocytes. Clin Vaccine Immunol. 2009;16:1648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Niño JLG, Kwan RY, Weninger W, Biro M. Antigen-specific T cells fully conserve antitumour function following cryopreservation. Immunol Cell Biol. 2016;94:411–8.

    Article  CAS  Google Scholar 

  184. Ford T, Wenden C, Mbekeani A, Dally L, Cox JH, Morin M, et al. Cryopreservation-related loss of antigen-specific IFNγ producing CD4+ T-cells can skew immunogenicity data in vaccine trials: lessons from a malaria vaccine trial substudy. Vaccine. 2017;35:1898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Costantini A, Mancini S, Giuliodoro S, Butini L, Regnery CM, Silvestri G, et al. Effects of cryopreservation on lymphocyte immunophenotype and function. J Immunol Methods. 2003;278:145–55.

    Article  CAS  PubMed  Google Scholar 

  186. Reimann KA, Chernoff M, Wilkening CL, Nickerson CE, Landay AL. Preservation of lymphocyte immunophenotype and proliferative responses in cryopreserved peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected donors: implications for multicenter clinical trials. The ACTG Immunology Advanced Technology Laboratories. Clin Diagn Lab Immunol. 2000;7:352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Owen RE, Sinclair E, Emu B, Heitman JW, Hirschkorn DF, Epling CL, et al. Loss of T cell responses following long-term cryopreservation. J Immunol Methods. 2007;326:93–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Luo Y, Wang P, Liu H, Zhu Z, Li C, Gao Y. The state of T cells before cryopreservation: effects on post-thaw proliferation and function. Cryobiology. 2017;79:65–70.

    Article  CAS  PubMed  Google Scholar 

  189. Sadeghi A, Ullenhag G, Wagenius G, Tötterman TH, Eriksson F. Rapid expansion of T cells: effects of culture and cryopreservation and importance of short-term cell recovery. Acta Oncol. 2013;52:978–86.

    Article  CAS  PubMed  Google Scholar 

  190. Lemieux J, Jobin C, Simard C, Néron S. A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis. J Immunol Methods. 2016;434:73–82.

    Article  CAS  PubMed  Google Scholar 

  191. Panch SR, Srivastava SK, Elavia N, McManus A, Liu S, Jin P, et al. Effect of cryopreservation on autologous chimeric antigen receptor T cell characteristics. Mol Therapy. 2019;27:1275–85.

    Article  CAS  Google Scholar 

  192. Elavia N, McManus A, Highfill SL, Ren J, Shah NN, Fry TJ, et al. The Post-thaw recovery of cryopreserved chimeric antigen receptor (CAR) T-cells during manufacture is better than that of cryopreserved peripheral blood CD3+ cells. Blood. 2017;130:4475–4475.

    Google Scholar 

  193. Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Belló I, Cilio CM, Wong FS, et al. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clin Exp Immunol. 2011;163:33–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ramachandran H, Laux J, Moldovan I, Caspell R, Lehmann PV, Subbramanian RA. Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies. Cells. 2012;1:313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Riedhammer C, Halbritter D, Weissert R. Peripheral blood mononuclear cells: isolation, freezing, thawing, and culture. Methods Mol Biol. 2016;1304:53–61.

    Article  PubMed  Google Scholar 

  196. Hønge BL, Petersen MS, Olesen R, Møller BK, Erikstrup C. Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS ONE. 2017;12:e0187440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Hanna J, Hubel A, Lemke E. Diffusion-based extraction of DMSO from a cell suspension in a three stream. Vert Microchannel Biotechnol Bioeng. 2012;109:2316–24.

    Article  CAS  Google Scholar 

  198. Sethi D, Ellis J, Truong S, Perea J, Contreras Z, Miller J. Quick and easy method for removal of DMSO from thawed cellular products. Cytotherapy. 2018;20:e6.

    Article  Google Scholar 

  199. Pollock K, Budenske JW, McKenna DH, Dosa PI, Hubel A. Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells. J Tissue Eng Regen Med. 2017;11:2806–15.

    Article  CAS  PubMed  Google Scholar 

  200. Pi C-H, Yu G, Petersen A, Hubel A. Characterizing the “sweet spot” for the preservation of a T-cell line using osmolytes. Sci Rep. 2018;8:16223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Pi C-H, Yu G, Dosa PI, Hubel A. Characterizing modes of action and interaction for multicomponent osmolyte solutions on Jurkat cells. Biotechnol Bioeng. 2019;116:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Assal RE, Abou-Elkacem L, Tocchio A, Pasley S, Matosevic S, Kaplan DL, et al. Bioinspired preservation of natural killer cells for cancer immunotherapy. Adv Sci. 2019;6:1802045.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Matosevic.

Ethics declarations

Author contributions

XY and SM researched the literature, edited and wrote the manuscript.

Funding

This work was supported by the V Foundation for Cancer Research (Grant #D2019-039) and the Walther Cancer Foundation (Embedding Tier I/II Grant #0186.01) and Purdue Research Foundation Fellowship to Xue Yao.

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Matosevic, S. Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs 35, 529–545 (2021). https://doi.org/10.1007/s40259-021-00494-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-021-00494-7

Navigation