Skip to main content

Haematopoietic Stem Cell Transplantation for Multiple Sclerosis: Current Status

Abstract

Autologous haematopoietic stem cell transplantation (AHSCT) is a treatment option for aggressive forms of multiple sclerosis (MS) that has been derived from haematological indications and repurposed for treatment of refractory autoimmune diseases. In the present review, a search for clinical studies on AHSCT was performed on the PubMed website and ClinicalTrials.gov databases. Papers were selected according to the following criteria: text written in English language, publication date between 2014 and August 2019, and reports including more than five patients. Prospective randomised and uncontrolled trials and retrospective case series were reviewed to examine the safety and efficacy of the procedure. Treatment protocols, pathological data and economic aspects of AHSCT were also succinctly covered. Growing evidence suggests that long-term suppression of inflammatory activity with stabilization or improvement of disability can be achieved in a high proportion of properly selected patients. More sophisticated outcome measures recently adopted, including effect on brain atrophy and disease biomarkers, are giving further insight into the effectiveness of transplant. The risks of the procedure have decreased to levels that can be considered acceptable for treatment of individuals with aggressive forms of MS. Careful selection of patients with an expected good benefit/risk profile, which is maximal when AHSCT is performed in early phases of the disease, and the expertise of transplant centres are critical to the success of treatment. Higher efficacy of AHSCT than with conventional treatments has recently been demonstrated by one randomised trial and further evidence is awaited from ongoing and planned trials comparing AHSCT with the most effective disease-modifying therapeutic agents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–36. https://doi.org/10.1016/S0140-6736(18)30481-1.

    Article  PubMed  Google Scholar 

  2. 2.

    Manouchehrinia A, Beiki O, Hillert J. Clinical course of multiple sclerosis: a nationwide cohort study. Mult Scler. 2017;23(11):1488–95. https://doi.org/10.1177/1352458516681197.

    Article  PubMed  Google Scholar 

  3. 3.

    Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36. https://doi.org/10.1038/nrneurol.2016.187.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(Pt 7):1900–13. https://doi.org/10.1093/brain/awq076.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ. 2016;354:i3518. https://doi.org/10.1136/bmj.i3518.

    Article  PubMed  Google Scholar 

  6. 6.

    Sharrack B, Saccardi R, Alexander T, Badoglio M, Burman J, Farge D, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transpl. 2020;55(2):283–306. https://doi.org/10.1038/s41409-019-0684-0.

    Article  Google Scholar 

  7. 7.

    Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–16. https://doi.org/10.1084/jem.20041679.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Abrahamsson S, Muraro PA. Immune re-education following autologous hematopoietic stem cell transplantation. Autoimmunity. 2008;41(8):577–84. https://doi.org/10.1080/08916930802197081.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Investig. 2014;124(3):1168–72. https://doi.org/10.1172/JCI71691.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Karnell FG, Lin D, Motley S, Duhen T, Lim N, Campbell DJ, et al. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 2017;189(3):268–78. https://doi.org/10.1111/cei.12985.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain. 2013;136(Pt 9):2888–903. https://doi.org/10.1093/brain/awt182.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    de Paula ASA, Malmegrim KC, Panepucci RA, Brum DS, Barreira AA, Carlos Dos Santos A, et al. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin Sci (Lond). 2015;128(2):111–20. https://doi.org/10.1042/CS20140095.

    CAS  Article  Google Scholar 

  13. 13.

    Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA, et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transpl. 2015;50(3):380–9. https://doi.org/10.1038/bmt.2014.277.

    CAS  Article  Google Scholar 

  14. 14.

    Collins F, Kazmi M, Muraro PA. Progress and prospects for the use and the understanding of the mode of action of autologous hematopoietic stem cell transplantation in the treatment of multiple sclerosis. Expert Rev Clin Immunol. 2017;13(6):611–22. https://doi.org/10.1080/1744666X.2017.1297232.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Moore J, Brooks P, Milliken S, Biggs J, Ma D, Handel M, et al. A pilot randomized trial comparing CD34-selected versus unmanipulated hemopoietic stem cell transplantation for severe, refractory rheumatoid arthritis. Arthritis Rheum. 2002;46(9):2301–9. https://doi.org/10.1002/art.10495.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hamerschlak N, Rodrigues M, Moraes DA, Oliveira MC, Stracieri AB, Pieroni F, et al. Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transpl. 2010;45(2):239–48. https://doi.org/10.1038/bmt.2009.127.

    CAS  Article  Google Scholar 

  17. 17.

    Nash RA, Dansey R, Storek J, Georges GE, Bowen JD, Holmberg LA, et al. Epstein–Barr virus-associated posttransplantation lymphoproliferative disorder after high-dose immunosuppressive therapy and autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases. Biol Blood Marrow Transpl. 2003;9(9):583–91.

    Article  Google Scholar 

  18. 18.

    Moore JJ, Massey JC, Ford CD, Khoo ML, Zaunders JJ, Hendrawan K, et al. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(5):514–21. https://doi.org/10.1136/jnnp-2018-319446.

    Article  PubMed  Google Scholar 

  19. 19.

    Shevchenko JL, Kuznetsov AN, Ionova TI, Melnichenko VY, Fedorenko DA, Kurbatova KA, et al. Long-term outcomes of autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis: physician’s and patient’s perspectives. Ann Hematol. 2015;94(7):1149–57. https://doi.org/10.1007/s00277-015-2337-8.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Scheinberg P, Nunez O, Weinstein B, Scheinberg P, Biancotto A, Wu CO, et al. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011;365(5):430–8. https://doi.org/10.1056/NEJMoa1103975.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Meinl E, Krumbholz M, Derfuss T, Junker A, Hohlfeld R. Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci. 2008;274(1–2):42–4. https://doi.org/10.1016/j.jns.2008.06.032.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Vassal G, Gouyette A, Hartmann O, Pico JL, Lemerle J. Pharmacokinetics of high-dose busulfan in children. Cancer Chemother Pharmacol. 1989;24(6):386–90. https://doi.org/10.1007/bf00257448.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Egorin MJ, Kaplan RS, Salcman M, Aisner J, Colvin M, Wiernik PH, et al. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin Pharmacol Ther. 1982;32(1):122–8. https://doi.org/10.1038/clpt.1982.135.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Prodduturi P, Bierman PJ. Current and emerging pharmacotherapies for primary CNS lymphoma. Clin Med Insights Oncol. 2012;6:219–31. https://doi.org/10.4137/CMO.S7752.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol. 2007;25(16):2295–305. https://doi.org/10.1200/jco.2006.09.9861.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry. 2014;85(10):1116–21. https://doi.org/10.1136/jnnp-2013-307207.

    Article  PubMed  Google Scholar 

  27. 27.

    Rush CA, Atkins HL, Freedman MS. Autologous hematopoietic stem cell transplantation in the treatment of multiple sclerosis. Cold Spring Harb Perspect Med. 2019. https://doi.org/10.1101/cshperspect.a029082.

    Article  PubMed  Google Scholar 

  28. 28.

    Major EO, Yousry TA, Clifford DB. Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. Lancet Neurol. 2018;17(5):467–80. https://doi.org/10.1016/S1474-4422(18)30040-1.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63. https://doi.org/10.1016/j.msard.2017.01.006.

    Article  PubMed  Google Scholar 

  30. 30.

    Frau J, Carai M, Coghe G, Fenu G, Lorefice L, La Nasa G, et al. Long-term follow-up more than 10 years after HSCT: a monocentric experience. J Neurol. 2018;265(2):410–6. https://doi.org/10.1007/s00415-017-8718-2.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Guida M, Castaldi MA, Rosamilio R, Giudice V, Orio F, Selleri C. Reproductive issues in patients undergoing hematopoietic stem cell transplantation: an update. J Ovarian Res. 2016;9(1):72. https://doi.org/10.1186/s13048-016-0279-y.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Snarski E, Snowden JA, Oliveira MC, Simoes B, Badoglio M, Carlson K, et al. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: a retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transpl. 2015;50(2):216–20. https://doi.org/10.1038/bmt.2014.248.

    CAS  Article  Google Scholar 

  33. 33.

    Massenkeil G, Alexander T, Rosen O, Dorken B, Burmester G, Radbruch A, et al. Long-term follow-up of fertility and pregnancy in autoimmune diseases after autologous haematopoietic stem cell transplantation. Rheumatol Int. 2016;36(11):1563–8. https://doi.org/10.1007/s00296-016-3531-2.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017;74(4):459–69. https://doi.org/10.1001/jamaneurol.2016.5867.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Daikeler T, Labopin M, Di Gioia M, Abinun M, Alexander T, Miniati I, et al. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: a retrospective study of the EBMT Autoimmune Disease Working Party. Blood. 2011;118(6):1693–8. https://doi.org/10.1182/blood-2011-02-336156.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–85. https://doi.org/10.1016/S0140-6736(16)30169-6.

    Article  PubMed  Google Scholar 

  37. 37.

    Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2015;313(3):275–84. https://doi.org/10.1001/jama.2014.17986.

    Article  PubMed  Google Scholar 

  38. 38.

    Casanova B, Jarque I, Gascon F, Hernandez-Boluda JC, Perez-Miralles F, de la Rubia J, et al. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis. Neurol Sci. 2017;38(7):1213–21. https://doi.org/10.1007/s10072-017-2933-6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Danylesko I, Shimoni A. Second malignancies after hematopoietic stem cell transplantation. Curr Treat Options Oncol. 2018;19(2):9. https://doi.org/10.1007/s11864-018-0528-y.

    Article  PubMed  Google Scholar 

  40. 40.

    Lebrun C, Rocher F. Cancer risk in patients with multiple sclerosis: potential impact of disease-modifying drugs. CNS Drugs. 2018;32(10):939–49. https://doi.org/10.1007/s40263-018-0564-y.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Walker LA, Berard JA, Atkins HL, Bowman M, Lee H, Freedman MS. Cognitive change and neuroimaging following immunoablative therapy and hematopoietic stem cell transplantation in multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2014;3(1):129–35. https://doi.org/10.1016/j.msard.2013.05.001.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017;13(7):391–405. https://doi.org/10.1038/nrneurol.2017.81.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–8. https://doi.org/10.1212/wnl.0000000000001329.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Currò D, Vuolo L, Gualandi F, Bacigalupo A, Roccatagliata L, Capello E, et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study. Mult Scler. 2015;21(11):1423–30. https://doi.org/10.1177/1352458514564484.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Burt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA. 2019;321(2):165–74. https://doi.org/10.1001/jama.2018.18743.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Tolf A, Fagius J, Carlson K, Akerfeldt T, Granberg T, Larsson EM, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019;140(5):320–7. https://doi.org/10.1111/ane.13147.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842–52. https://doi.org/10.1212/WNL.0000000000003660.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ge F, Lin H, Li Z, Chang T. Efficacy and safety of autologous hematopoietic stem-cell transplantation in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci. 2019;40(3):479–87. https://doi.org/10.1007/s10072-018-3670-1.

    Article  PubMed  Google Scholar 

  49. 49.

    Sormani MP, Muraro PA, Schiavetti I, Signori A, Laroni A, Saccardi R, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology. 2017;88(22):2115–22. https://doi.org/10.1212/WNL.0000000000003987.

    Article  PubMed  Google Scholar 

  50. 50.

    Snowden JA, Badoglio M, Labopin M, Giebel S, McGrath E, Marjanovic Z, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017;1(27):2742–55. https://doi.org/10.1182/bloodadvances.2017010041.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910. https://doi.org/10.1056/NEJMoa044397.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911–23. https://doi.org/10.1056/NEJMoa044396.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28. https://doi.org/10.1016/S0140-6736(12)61769-3.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39. https://doi.org/10.1016/S0140-6736(12)61768-1.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34. https://doi.org/10.1056/NEJMoa1601277.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Mancardi GL, Saccardi R, Filippi M, Gualandi F, Murialdo A, Inglese M, et al. Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology. 2001;57(1):62–8. https://doi.org/10.1212/wnl.57.1.62.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Filippi M, Rovaris M, Capra R, Gasperini C, Yousry TA, Sormani MP, et al. A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis. Implications for phase II clinical trials. Brain. 1998;121(Pt 10):2011–20. https://doi.org/10.1093/brain/121.10.2011.

    Article  PubMed  Google Scholar 

  58. 58.

    Sormani MP, Muraro PA, Saccardi R, Mancardi G. NEDA status in highly active MS can be more easily obtained with autologous hematopoietic stem cell transplantation than other drugs. Mult Scler. 2017;23(2):201–4. https://doi.org/10.1177/1352458516645670.

    Article  PubMed  Google Scholar 

  59. 59.

    Popescu V, Agosta F, Hulst HE, Sluimer IC, Knol DL, Sormani MP, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(10):1082–91. https://doi.org/10.1136/jnnp-2012-304094.

    Article  PubMed  Google Scholar 

  60. 60.

    De Stefano N, Stromillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M, et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(1):93–9. https://doi.org/10.1136/jnnp-2014-309903.

    Article  PubMed  Google Scholar 

  61. 61.

    Dwyer MG, Hagemeier J, Bergsland N, Horakova D, Korn JR, Khan N, et al. Establishing pathological cut-offs for lateral ventricular volume expansion rates. Neuroimage Clin. 2018;18:494–501. https://doi.org/10.1016/j.nicl.2018.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Martola J, Stawiarz L, Fredrikson S, Hillert J, Bergstrom J, Flodmark O, et al. Progression of non-age-related callosal brain atrophy in multiple sclerosis: a 9-year longitudinal MRI study representing four decades of disease development. J Neurol Neurosurg Psychiatry. 2007;78(4):375–80. https://doi.org/10.1136/jnnp.2006.106690.

    Article  PubMed  Google Scholar 

  63. 63.

    De Stefano N, Giorgio A, Battaglini M, Rovaris M, Sormani MP, Barkhof F, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74(23):1868–76. https://doi.org/10.1212/WNL.0b013e3181e24136.

    Article  PubMed  Google Scholar 

  64. 64.

    Chen JT, Collins DL, Atkins HL, Freedman MS, Galal A, Arnold DL, et al. Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology. 2006;66(12):1935–7. https://doi.org/10.1212/01.wnl.0000219816.44094.f8.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Rocca MA, Mondria T, Valsasina P, Sormani MP, Flach ZH, Te Boekhorst PA, et al. A three-year study of brain atrophy after autologous hematopoietic stem cell transplantation in rapidly evolving secondary progressive multiple sclerosis. AJNR Am J Neuroradiol. 2007;28(9):1659–61. https://doi.org/10.3174/ajnr.A0644.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Lee H, Narayanan S, Brown RA, Chen JT, Atkins HL, Freedman MS, et al. Brain atrophy after bone marrow transplantation for treatment of multiple sclerosis. Mult Scler. 2017;23(3):420–31. https://doi.org/10.1177/1352458516650992.

    Article  PubMed  Google Scholar 

  67. 67.

    Mondria T, Lamers CH, te Boekhorst PA, Gratama JW, Hintzen RQ. Bone-marrow transplantation fails to halt intrathecal lymphocyte activation in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2008;79(9):1013–5. https://doi.org/10.1136/jnnp.2007.133520.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Larsson D, Akerfeldt T, Carlson K, Burman J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult Scler. 2019. https://doi.org/10.1177/1352458519863983.

    Article  PubMed  Google Scholar 

  69. 69.

    Rejdak K, Stelmasiak Z, Grieb P. Cladribine induces long lasting oligoclonal bands disappearance in relapsing multiple sclerosis patients: 10-year observational study. Mult Scler Relat Disord. 2019;27:117–20. https://doi.org/10.1016/j.msard.2018.10.006.

    Article  PubMed  Google Scholar 

  70. 70.

    Mancuso R, Franciotta D, Rovaris M, Caputo D, Sala A, Hernis A, et al. Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of multiple sclerosis patients: a longitudinal study. Mult Scler. 2014;20(14):1900–3. https://doi.org/10.1177/1352458514538111.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 2019. https://doi.org/10.1001/jamaneurol.2019.1534.

    Article  PubMed  Google Scholar 

  72. 72.

    Novakova L, Zetterberg H, Sundstrom P, Axelsson M, Khademi M, Gunnarsson M, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230–7. https://doi.org/10.1212/WNL.0000000000004683.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Thebault S, Tessier D, Lee H, Bowman M, Bar-Or A, Arnold DL, et al. High serum neurofilament light chain normalizes after hematopoietic stem cell transplantation for MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(5):e598. https://doi.org/10.1212/NXI.0000000000000598.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Metz I, Lucchinetti CF, Openshaw H, Garcia-Merino A, Lassmann H, Freedman MS, et al. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain. 2007;130(Pt 5):1254–62. https://doi.org/10.1093/brain/awl370.

    Article  PubMed  Google Scholar 

  75. 75.

    Wundes A, Bowen JD, Kraft GH, Maravilla KR, McLaughlin B, von Geldern G, et al. Brain pathology of a patient 7 years after autologous hematopoietic stem cell transplantation for multiple sclerosis. J Neurol Sci. 2017;373:339–41. https://doi.org/10.1016/j.jns.2017.01.016.

    Article  PubMed  Google Scholar 

  76. 76.

    Havrdova E, Galetta S, Hutchinson M, Stefoski D, Bates D, Polman CH, et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 2009;8(3):254–60. https://doi.org/10.1016/S1474-4422(09)70021-3.

    Article  PubMed  Google Scholar 

  77. 77.

    Oturai AB, Koch-Henriksen N, Petersen T, Jensen PE, Sellebjerg F, Sorensen PS. Efficacy of natalizumab in multiple sclerosis patients with high disease activity: a Danish nationwide study. Eur J Neurol. 2009;16(3):420–3. https://doi.org/10.1111/j.1468-1331.2008.02517.x.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Maximizing Outcome of Multiple Sclerosis Transplantation (MOST) [ClinicalTrials.gov identifier NCT03342638]. National Institutes of Health, ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03342638?term=autologous+hematopoietic+stem+cells+transplantation&recrs=abd&cond=Multiple+Sclerosis&rank=4. Accessed 20 Aug 2019.

  79. 79.

    Batcheller L, Baker D. Cost of disease modifying therapies for multiple sclerosis: is front-loading the answer? J Neurol Sci. 2019;404:19–28. https://doi.org/10.1016/j.jns.2019.07.009.

    Article  PubMed  Google Scholar 

  80. 80.

    Kobelt G, Berg J, Lindgren P, Jonsson B, Stawiarz L, Hillert J. Modeling the cost-effectiveness of a new treatment for MS (natalizumab) compared with current standard practice in Sweden. Mult Scler. 2008;14(5):679–90. https://doi.org/10.1177/1352458507086667.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Ernstsson O, Gyllensten H, Alexanderson K, Tinghog P, Friberg E, Norlund A. Cost of illness of multiple sclerosis—a systematic review. PLoS One. 2016;11(7):e0159129. https://doi.org/10.1371/journal.pone.0159129.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler. 2017;23(8):1123–36. https://doi.org/10.1177/1352458517694432.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Tinelli M, Kanavos P, Efthymiadou O, Visintin E, Grimaccia F, Mossman J. Using IMPrESS to guide policy change in multiple sclerosis. Mult Scler. 2018;24(9):1251–5. https://doi.org/10.1177/1352458517737388.

    Article  PubMed  Google Scholar 

  84. 84.

    Tappenden P, Saccardi R, Confavreux C, Sharrack B, Muraro PA, Mancardi GL, et al. Autologous haematopoietic stem cell transplantation for secondary progressive multiple sclerosis: an exploratory cost-effectiveness analysis. Bone Marrow Transpl. 2010;45(6):1014–21. https://doi.org/10.1038/bmt.2009.305.

    CAS  Article  Google Scholar 

  85. 85.

    Burman J, Kirgizov K, Carlson K, Badoglio M, Mancardi GL, De Luca G, et al. Autologous hematopoietic stem cell transplantation for pediatric multiple sclerosis: a registry-based study of the Autoimmune Diseases Working Party (ADWP) and Pediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl. 2017;52(8):1133–7. https://doi.org/10.1038/bmt.2017.40.

    CAS  Article  Google Scholar 

  86. 86.

    Borgmann-Staudt A, Rendtorff R, Reinmuth S, Hohmann C, Keil T, Schuster FR, et al. Fertility after allogeneic haematopoietic stem cell transplantation in childhood and adolescence. Bone Marrow Transpl. 2012;47(2):271–6. https://doi.org/10.1038/bmt.2011.78.

    CAS  Article  Google Scholar 

  87. 87.

    Vatanen A, Wilhelmsson M, Borgstrom B, Gustafsson B, Taskinen M, Saarinen-Pihkala UM, et al. Ovarian function after allogeneic hematopoietic stem cell transplantation in childhood and adolescence. Eur J Endocrinol. 2014;170(2):211–8. https://doi.org/10.1530/EJE-13-0694.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Dvorak CC, Gracia CR, Sanders JE, Cheng EY, Baker KS, Pulsipher MA, et al. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, and reproductive risks. Biol Blood Marrow Transpl. 2011;17(12):1725–38. https://doi.org/10.1016/j.bbmt.2011.10.006.

    Article  Google Scholar 

  89. 89.

    Jadoul P, Anckaert E, Dewandeleer A, Steffens M, Dolmans MM, Vermylen C, et al. Clinical and biologic evaluation of ovarian function in women treated by bone marrow transplantation for various indications during childhood or adolescence. Fertil Steril. 2011;96(1):126–133.e3. https://doi.org/10.1016/j.fertnstert.2011.03.108.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Harding KE, Liang K, Cossburn MD, Ingram G, Hirst CL, Pickersgill TP, et al. Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2013;84(2):141–7. https://doi.org/10.1136/jnnp-2012-303996.

    Article  PubMed  Google Scholar 

  91. 91.

    Burman J, Tolf A, Hagglund H, Askmark H. Autologous haematopoietic stem cell transplantation for neurological diseases. J Neurol Neurosurg Psychiatry. 2018;89(2):147–55. https://doi.org/10.1136/jnnp-2017-316271.

    Article  PubMed  Google Scholar 

  92. 92.

    Daumer M, Griffith LM, Meister W, Nash RA, Wolinsky JS. Survival, and time to an advanced disease state or progression, of untreated patients with moderately severe multiple sclerosis in a multicenter observational database: relevance for design of a clinical trial for high dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation. Mult Scler. 2006;12(2):174–9. https://doi.org/10.1191/135248506ms1256oa.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Hirst C, Ingram G, Swingler R, Compston DA, Pickersgill T, Robertson NP. Change in disability in patients with multiple sclerosis: a 20-year prospective population-based analysis. J Neurol Neurosurg Psychiatry. 2008;79(10):1137–43. https://doi.org/10.1136/jnnp.2007.133785.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Coles AJ, Cox A, Le Page E, Jones J, Trip SA, Deans J, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol. 2006;253(1):98–108. https://doi.org/10.1007/s00415-005-0934-5.

    Article  PubMed  Google Scholar 

  95. 95.

    Mariottini A, Innocenti C, Forci B, Magnani E, Mechi C, Barilaro A, et al. Safety and efficacy of autologous hematopoietic stem-cell transplantation following natalizumab discontinuation in aggressive multiple sclerosis. Eur J Neurol. 2019;26(4):624–30. https://doi.org/10.1111/ene.13866.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Cohen JA, Baldassari LE, Atkins HL, Bowen JD, Bredeson C, Carpenter PA, et al. Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: position statement from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transpl. 2019;25(5):845–54. https://doi.org/10.1016/j.bbmt.2019.02.014.

    Article  Google Scholar 

  97. 97.

    Snowden JA, Saccardi R, Allez M, Ardizzone S, Arnold R, Cervera R, et al. Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation. Bone Marrow Transpl. 2012;47(6):770–90. https://doi.org/10.1038/bmt.2011.185.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Institute of Health Research (NIHR) (EME Project: 16/126/26 to PM) and the NIHR Biomedical Research Centre funding scheme to Imperial College London.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo A. Muraro.

Ethics declarations

Conflict of interest

Dr. A. Mariottini discloses personal fees from Merck-Serono and non-financial support from Biogen Idec, Teva and Novartis. Dr. E. De Matteis reports no conflict of interest. Prof. Paolo A. Muraro discloses travel support and speaker honoraria from unrestricted educational activities organised by Novartis, Bayer HealthCare, Bayer Pharma, Biogen Idec, Merck-Serono and Sanofi Aventis.

Funding

The present work was supported by the National Institute of Health Research (EME Project: 16/126/26 to PM) and the NIHR Biomedical Research Centre funding scheme to Imperial College London.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariottini, A., De Matteis, E. & Muraro, P.A. Haematopoietic Stem Cell Transplantation for Multiple Sclerosis: Current Status. BioDrugs 34, 307–325 (2020). https://doi.org/10.1007/s40259-020-00414-1

Download citation