Skip to main content
Log in

Current Considerations on Characterization of Immune Response to Multi-Domain Biotherapeutics

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Compounds containing two or more structural domains with a distinct mode of action relevant to functionality have been defined as multi-domain biotherapeutics (MDBs). Several modalities, including endogenous protein fusions with an antibody Fc fragment or another polypeptide, bispecific antibodies, antibody–drug conjugates, as well as polyethylene glycol conjugates have been viewed as examples of MDBs. Similar to other biotherapeutics, MDBs have the potential to induce a host immune response, commonly detected in the form of anti-drug antibodies (ADAs). The need to characterize ADA specificity to a particular domain of the MDB has been identified as a potential regulatory requirement based on the compound nature of the drug and associated immunogenicity risk factors. MDB-related immunogenicity risk factors are discussed herein. The relative risk level of each of the immunogenicity factors was analyzed based on publicly available information. It is proposed that MDB-related immunogenicity risk factors can be divided into major and minor categories. Major risk category factors include (a) presence of immunogenic structural or linear epitopes of either non-human or human sequence origin and (b) significant homology of an MDB domain to an endogenous protein with a specific and unique function. Proposed minor risk category factors include (a) epitope spread, (b) repetitive antigenic structure of MDB, and (c) hapten-like effect due to chemical conjugation or fusion with a larger protein. Detailed modality-based information on several examples of MDBs is presented to support this proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shankar G, Shores E, Wagner C, Mire-Sluis A. Scientific and regulatory considerations on the immunogenicity of biologics. Trends Biotechnol. 2006;24(6):274–80.

    CAS  PubMed  Google Scholar 

  2. Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333(1–2):1–9.

    CAS  PubMed  Google Scholar 

  3. Gorovits B, Wakshull E, Pillutla R, Xu Y, Manning MS, Goyal J. Recommendations for the characterization of immunogenicity response to multiple domain biotherapeutics. J Immunol Methods. 2014;408:1–12.

    CAS  PubMed  Google Scholar 

  4. FDA. Immunogenicity Testing of Therapeutic Protein Products—Developing and Validating Assays for Anti-Drug Antibody Detection. Guidance for Industry: U.S. Department of Health and Human Services Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Center for Biologics Evaluation and Research (CBER); 2019. https://www.fda.gov/media/119788/download. Accessed 17 Oct 2019.

  5. Rosenberg AS. Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev Biol. 2003;112:15–21.

    CAS  Google Scholar 

  6. Rosenberg AS, Worobec A. A risk-based approach to immunogenicity concerns of therapeutic protein products—Part 1—considering consequences of the immune response to a protein. Biopharm Int. 2004;17:22–6.

    Google Scholar 

  7. Rosenberg AS, Verthelyi D, Cherney BW. Managing uncertainty: a perspective on risk pertaining to product quality attributes as they bear on immunogenicity of therapeutic proteins. J Pharm Sci. 2012;101(10):3560–7.

    CAS  PubMed  Google Scholar 

  8. Buttel IC, Voller K, Schneider CK, European Medicines A. Immunogenicity and its impact on benefit/risk considerations in the authorisation of biopharmaceuticals. Curr Drug Saf. 2010;5(4):287–92.

    PubMed  Google Scholar 

  9. Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine. 2003;21(25–26):3837–44.

    CAS  PubMed  Google Scholar 

  10. Maneiro JR, Salgado E, Gomez-Reino JJ. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated Inflammatory conditions: systematic review and meta-analysis. JAMA Intern Med. 2013;173(15):1416–28.

    CAS  PubMed  Google Scholar 

  11. FDA. Guidance for Industry Immunogenicity Assessment for Therapeutic Protein Products. 2014. https://www.fda.gov/media/85017/download. Accessed 17 Oct 2019.

  12. Dalum I, Jensen MR, Gregorius K, Thomasen CM, Elsner HI, Mouritsen S. Induction of cross-reactive antibodies against a self protein by immunization with a modified self protein containing a foreign T helper epitope. Mol Immunol. 1997;34(16–17):1113–20.

    CAS  PubMed  Google Scholar 

  13. Tuohy VK, Yu M, Weinstock-Guttman B, Kinkel RP. Diversity and plasticity of self recognition during the development of multiple sclerosis. J Clin Invest. 1997;99(7):1682–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindsey JW. Use of reinduced experimental autoimmune encephalomyelitis to evaluate the importance of epitope spread. Int Immunol. 1998;10(6):743–8.

    CAS  PubMed  Google Scholar 

  15. Thomas SS, Borazan N, Barroso N, Duan L, Taroumian S, Kretzmann B, et al. Comparative immunogenicity of TNF inhibitors: impact on clinical efficacy and tolerability in the management of autoimmune diseases. A systematic review and meta-analysis. BioDrugs. 2015;29(4):241–58.

    CAS  PubMed  Google Scholar 

  16. Gorovits B, Baltrukonis DJ, Bhattacharya I, Birchler MA, Finco D, Sikkema D, et al. Immunoassay methods used in clinical studies for the detection of anti-drug antibodies to adalimumab and infliximab. Clin Exp Immunol. 2018;192(3):348–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. HERCEPTIN® (trastuzumab): Food and Drug Administration. 1998. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. Accessed 17 Oct 2019.

  18. CYRAMZA (ramucirumab): Food and Drug Administration. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125477s002lbl.pdf. Accessed 17 Oct 2019.

  19. AVASTIN® (bevacizumab): Food and Drug Administration. 2004. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125085s301lbl.pdf. Accessed 17 Oct 2019.

  20. Miguelino MG, Powell JS. Clinical utility and patient perspectives on the use of extended half-life rFIXFc in the management of hemophilia B. Patient prefer Adherence. 2014;8:1073–83.

    PubMed  PubMed Central  Google Scholar 

  21. Groomes CL, Gianferante DM, Crouch GD, Parekh DS, Scott DW, Lieuw K. Reduction of factor VIII inhibitor titers during immune tolerance induction with recombinant factor VIII-Fc fusion protein. Pediatric Blood Cancer. 2016;63(5):922–4.

    CAS  PubMed  Google Scholar 

  22. ELOCTATE®. Antihemophilic Factor (Recombinant), Fc Fusion Protein]: Food and Drug Administration. 2014. https://www.fda.gov/media/88746/download. Accessed 17 Oct 2019.

  23. Mahlangu J, Powell JS, Ragni MV, Chowdary P, Josephson NC, Pabinger I, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014;123(3):317–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mancuso ME, Mannucci PM, Rocino A, Garagiola I, Tagliaferri A, Santagostino E. Source and purity of factor VIII products as risk factors for inhibitor development in patients with hemophilia A. J Thromb Haemost. 2012;10(5):781–90.

    CAS  PubMed  Google Scholar 

  25. Morfini M. Pharmacokinetic drug evaluation of albutrepenonacog alfa (CSL654) for the treatment of hemophilia. Expert Opin Drug Metab Toxicol. 2016;12(11):1359–65.

    CAS  PubMed  Google Scholar 

  26. Hartmann J, Croteau SE. 2017 Clinical trials update: innovations in hemophilia therapy. Am J Hematol. 2016;91(12):1252–60.

    CAS  PubMed  Google Scholar 

  27. Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JX, Garcia A, et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther. 2002;303(2):540–8.

    CAS  PubMed  Google Scholar 

  28. Bain VG, Kaita KD, Yoshida EM, Swain MG, Heathcote EJ, Neumann AU, et al. A phase 2 study to evaluate the antiviral activity, safety, and pharmacokinetics of recombinant human albumin-interferon alfa fusion protein in genotype 1 chronic hepatitis C patients. J Hepatol. 2006;44(4):671–8.

    CAS  PubMed  Google Scholar 

  29. Zhang M, Zhang J, Yan M, Luo D, Zhu W, Kaiser PK, et al. A phase 1 study of KH902, a vascular endothelial growth factor receptor decoy, for exudative age-related macular degeneration. Ophthalmology. 2011;118(4):672–8.

    PubMed  Google Scholar 

  30. Gaber AO, Mulgaonkar S, Kahan BD, Woodle ES, Alloway R, Bajjoka I, et al. YSPSL (rPSGL-Ig) for improvement of early renal allograft function: a double-blind, placebo-controlled, multi-center Phase IIa study. Clin Transpl. 2011;25(4):523–33.

    CAS  Google Scholar 

  31. Eigentler TK, Weide B, de Braud F, Spitaleri G, Romanini A, Pflugfelder A, et al. A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res. 2011;17(24):7732–42.

    CAS  PubMed  Google Scholar 

  32. Hank JA, Gan J, Ryu H, Ostendorf A, Stauder MC, Sternberg A, et al. Immunogenicity of the hu14.18-IL2 immunocytokine molecule in adults with melanoma and children with neuroblastoma. Clin Cancer Res. 2009;15(18):5923–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Spitaleri G, Berardi R, Pierantoni C, De Pas T, Noberasco C, Libbra C, et al. Phase I/II study of the tumour-targeting human monoclonal antibody-cytokine fusion protein L19-TNF in patients with advanced solid tumours. J Cancer Res Clin Oncol. 2013;139(3):447–55.

    CAS  PubMed  Google Scholar 

  34. Fishman MN, Thompson JA, Pennock GK, Gonzalez R, Diez LM, Daud AI, et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res. 2011;17(24):7765–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Haggerty HG, Abbott MA, Reilly TP, DeVona DA, Gleason CR, Tay L, et al. Evaluation of immunogenicity of the T cell costimulation modulator abatacept in patients treated for rheumatoid arthritis. J Rheumatol. 2007;34(12):2365–73.

    CAS  PubMed  Google Scholar 

  36. Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(3):164–72.

    PubMed  Google Scholar 

  37. Boado RJ, Hui EK, Lu JZ, Pardridge WM. IgG-enzyme fusion protein: pharmacokinetics and anti-drug antibody response in rhesus monkeys. Bioconjug Chem. 2013;24(1):97–104.

    CAS  PubMed  Google Scholar 

  38. Frampton J, Wagstaff A. Alefacept. Am J Clin Dermatol. 2003;4(4):277–87.

    PubMed  Google Scholar 

  39. Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014;6(232):232ra51–ra51.

    PubMed  PubMed Central  Google Scholar 

  40. Milicevic Z, Anglin G, Harper K, Konrad RJ, Skrivanek Z, Glaesner W, et al. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide. Diabetes Obes Metab. 2016;18(5):533–6.

    CAS  PubMed  Google Scholar 

  41. Bennett CL, Luminari S, Nissenson AR, Tallman MS, Klinge SA, McWilliams N, et al. Pure red-cell aplasia and epoetin therapy. N Engl J Med. 2004;351(14):1403–8.

    CAS  PubMed  Google Scholar 

  42. Poswar F, Baldo G, Giugliani R. Phase I and II clinical trials for the mucopolysaccharidoses. Expert Opin Investig Drugs. 2017;26(12):1331–40.

    CAS  PubMed  Google Scholar 

  43. Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol. 2015;67(2 Pt A):95–106.

    CAS  PubMed  Google Scholar 

  44. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608.

    CAS  PubMed  Google Scholar 

  45. Uchida N, Sambe T, Yoneyama K, Fukazawa N, Kawanishi T, Kobayashi S, et al. A first-in-human phase 1 study of ACE910, a novel factor VIII-mimetic bispecific antibody, in healthy subjects. Blood. 2016;127(13):1633–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruf P, Kluge M, Jager M, Burges A, Volovat C, Heiss MM, et al. Pharmacokinetics, immunogenicity and bioactivity of the therapeutic antibody catumaxomab intraperitoneally administered to cancer patients. Br J Clin Pharmacol. 2010;69(6):617–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. BLINCYTO (Blinatumomab). For injection, for intravenous use: Food and Drug Administration. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125557lbl.pdf. Accessed 17 Oct 2019.

  48. Zhu M, Wu B, Brandl C, Johnson J, Wolf A, Chow A, et al. Blinatumomab, a bispecific T-cell engager (BiTE((R))) for CD-19 targeted cancer immunotherapy: clinical pharmacology and its implications. Clin Pharmacokinet. 2016;55(10):1271–88.

    CAS  PubMed  Google Scholar 

  49. Santagostino E, Young G, Carcao M, Mannucci PM, Halimeh S, Austin S. A contemporary look at FVIII inhibitor development: still a great influence on the evolution of hemophilia therapies. Expert Rev Hematol. 2018;11(2):87–97.

    CAS  PubMed  Google Scholar 

  50. Kulkarni R, Aledort LM, Berntorp E, Brackman HH, Brown D, Cohen AR, et al. Therapeutic choices for patients with hemophilia and high-titer inhibitors. Am J Hematol. 2001;67(4):240–6.

    CAS  PubMed  Google Scholar 

  51. HEMLIBRA® (Emicizumab-kxwh). Food and Drug Administration. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761083s000lbl.pdf. Accessed 17 Oct 2019.

  52. Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med. 2017;377(9):809–18.

    CAS  PubMed  Google Scholar 

  53. Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Muir AJ, Shiffman ML, Zaman A, Yoffe B, de la Torre A, Flamm S, et al. Phase 1b study of pegylated interferon lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology. 2010;52(3):822–32.

    CAS  PubMed  Google Scholar 

  55. Hruska MW, Adamczyk R, Colston E, Hesney M, Stonier M, Myler H, et al. The pharmacokinetics of peginterferon lambda-1a following single dose administration to subjects with impaired renal function. Br J Clin Pharmacol. 2015;80(3):515–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. KRYSTEXXA®. (Pegloticase injection): Food and Drug Administration. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125293s085lbl.pdf.

  57. Guttmann A, Krasnokutsky S, Pillinger MH, Berhanu A. Pegloticase in gout treatment—safety issues, latest evidence and clinical considerations. Ther Adv Drug Saf. 2017;8(12):379–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lipsky PE, Calabrese LH, Kavanaugh A, Sundy JS, Wright D, Wolfson M, et al. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res Therapy. 2014;16(2):R60.

    Google Scholar 

  59. CIMZIA®. Food and Drug Administration. 2008. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125160s270lbl.pdf. Accessed 17 Oct 2019.

  60. Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9(11):1319–23.

    CAS  PubMed  Google Scholar 

  61. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007;110(1):103–11.

    PubMed  Google Scholar 

  62. Hershfield MS, Ganson NJ, Kelly SJ, Scarlett EL, Jaggers DA, Sundy JS. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res Ther. 2014;16(2):R63.

    PubMed  PubMed Central  Google Scholar 

  63. Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schellekens H, Hennink WE, Brinks V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res. 2013;30(7):1729–34.

    CAS  PubMed  Google Scholar 

  65. Ganson NJ, Kelly SJ, Scarlett E, Sundy JS, Hershfield MS. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther. 2006;8(1):R12.

    PubMed  Google Scholar 

  66. Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehrig CD, Huang W, et al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 2007;56(3):1021–8.

    CAS  PubMed  Google Scholar 

  67. Jani M, Isaacs JD, Morgan AW, Wilson AG, Plant D, Hyrich KL, et al. High frequency of antidrug antibodies and association of random drug levels with efficacy in certolizumab pegol-treated patients with rheumatoid arthritis: results from the BRAGGSS cohort. Ann Rheum Dis. 2017;76(1):208–13.

    CAS  PubMed  Google Scholar 

  68. Schreiber S, Khaliq-Kareemi M, Lawrance IC, Thomsen OØ, Hanauer SB, McColm J, et al. Maintenance therapy with certolizumab pegol for Crohn’s Disease. N Engl J Med. 2007;357(3):239–50.

    CAS  PubMed  Google Scholar 

  69. Hoofring SA, Lopez R, Hock MB, Kaliyaperumal A, Patel SK, Swanson SJ, et al. Immunogenicity testing strategy and bioanalytical assays for antibody-drug conjugates. Bioanalysis. 2013;5(9):1041–55.

    CAS  PubMed  Google Scholar 

  70. Carrasco-Triguero M, Yi JH, Dere R, Qiu ZJ, Lei C, Li Y, et al. Immunogenicity assays for antibody-drug conjugates: case study with ado-trastuzumab emtansine. Bioanalysis. 2013;5(9):1007–23.

    CAS  PubMed  Google Scholar 

  71. KADCYLA®. Food and Drug Administration. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125427lbl.pdf. Accessed 17 Oct 2019.

  72. Jani D, Nowak J, Chen Y, Boni J, Gorovits BJAO. Assessment of clinical immunogenicity of inotuzumab ozogamicin in patients with non-Hodgkin lymphoma and acute lymphoblastic leukemia. AAPS Open. 2018;4(1):1.

    Google Scholar 

  73. BESPONSA®. Food and Drug Administration. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf. Accessed 17 Oct 2019.

  74. ADCETRIS®. Food and Drug Administration. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125388_S056S078lbl.pdf. Accessed 17 Oct 2019.

  75. Woo JH, Bour SH, Dang T, Lee YJ, Park SK, Andreas E, et al. Preclinical studies in rats and squirrel monkeys for safety evaluation of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1). Cancer Immunol Immunother. 2008;57(8):1225–39.

    CAS  PubMed  Google Scholar 

  76. Frankel AE, Woo JH, Ahn C, Foss FM, Duvic M, Neville PH, et al. Resimmune, an anti-CD3epsilon recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica. 2015;100(6):794–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19(2):376–88.

    CAS  PubMed  Google Scholar 

  78. Wong BY, Gregory SA, Dang NH. Denileukin diftitox as novel targeted therapy for lymphoid malignancies. Cancer Invest. 2007;25(6):495–501.

    CAS  PubMed  Google Scholar 

  79. Cohen KA, Liu TF, Cline JM, Wagner JD, Hall PD, Frankel AE. Toxicology and pharmacokinetics of DT388IL3, a fusion toxin consisting of a truncated diphtheria toxin (DT388) linked to human interleukin 3 (IL3), in cynomolgus monkeys. Leuk Lymphoma. 2004;45(8):1647–56.

    CAS  PubMed  Google Scholar 

  80. Entwistle J, Brown JG, Chooniedass S, Cizeau J, MacDonald GC. Preclinical evaluation of VB6-845: an anti-EpCAM immunotoxin with reduced immunogenic potential. Cancer Biother Radiopharm. 2012;27(9):582–92.

    CAS  PubMed  Google Scholar 

  81. Kowalski M, Brazas L, Zaretsky R, Rasamoelisolo M, MacDonald G, Cuthbert W, et al. A phase I study of VB6–845, an anti-EpCAM fusion protein targeting advanced solid tumours of epithelial origin: preliminary results. J Clin Oncol. 2008;26(15_suppl.):14663.

    Google Scholar 

  82. Kreitman RJ, Dearden C, Zinzani PL, Delgado J, Karlin L, Robak T, et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia. 2018;32(8):1768–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mazor R, Onda M, Pastan I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol Rev. 2016;270(1):152–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. LUMOXITI™. Food and Drug Administration. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761104s000lbl.pdf.

  85. Wayne AS, Shah NN, Bhojwani D, Silverman LB, Whitlock JA, Stetler-Stevenson M, et al. Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood. 2017;130(14):1620–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30(15):1822–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao J, Kou G, Wang H, Chen H, Li B, Lu Y, et al. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat. 2009;115(1):29–41.

    CAS  PubMed  Google Scholar 

  88. Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 2015;17(1):35–43.

    CAS  PubMed  Google Scholar 

  89. Girish S, Gupta M, Wang B, Lu D, Krop IE, Vogel CL, et al. Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody-drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother Pharmacol. 2012;69(5):1229–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Carrasco-Triguero M, Dere RC, Milojic-Blair M, Saad OM, Nazzal D, Hong K, Kaur S. Immunogenicity of antibody–drug conjugates: observations across eight molecules in eleven clinical trials. Bioanalysis. 2019. https://doi.org/10.4155/bio-2018-0259.

    Article  PubMed  Google Scholar 

  91. Cohen KA, Liu TF, Cline JM, Wagner JD, Hall PD, Frankel AE. Safety evaluation of DT388IL3, a diphtheria toxin/interleukin 3 fusion protein, in the cynomolgus monkey. Cancer Immunol immunother. 2005;54(8):799–806.

    CAS  PubMed  Google Scholar 

  92. ONTAK® (denileukin diftitox). Food and Drug Administration. 1999. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/103767s5094lbl.pdf. Accessed 17 Oct 2019.

  93. Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48(5):1267–81.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Gorovits.

Ethics declarations

Funding

No funding was received in preparation of this review.

Conflict of interest

BG is employed by Pfizer Inc., which is involved in development of biotherapeutics of different modalities and indications. KP is employed by Genentech Inc., which is involved in development of biotherapeutics of different modalities and indications. AK is employed by Bioagilytix Inc., which is involved in development of biotherapeutics of different modalities and indications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorovits, B., Peng, K. & Kromminga, A. Current Considerations on Characterization of Immune Response to Multi-Domain Biotherapeutics. BioDrugs 34, 39–54 (2020). https://doi.org/10.1007/s40259-019-00389-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-019-00389-8

Navigation