Advertisement

BioDrugs

, Volume 32, Issue 3, pp 245–266 | Cite as

Humanized Mouse Models for the Preclinical Assessment of Cancer Immunotherapy

  • Anja Kathrin Wege
Review Article

Abstract

Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.

Notes

Acknowledgements

The author thanks Prof. Gero Brockhoff (Department of Gynecology and Obstetrics, University Medical Center Regensburg) for carefully proofreading the manuscript and for all his helpful suggestions.

Author Contribution

Anja K. Wege wrote the manuscript and approved the final manuscript submitted for publication.

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Anja K. Wege has no conflicts of interest that might be relevant to the contents of this manuscript.

References

  1. 1.
    Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science. 2012;338:1593–9.  https://doi.org/10.1126/science.1228186.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338:1587–93.  https://doi.org/10.1126/science.1230612.PubMedGoogle Scholar
  3. 3.
    O’Bleness M, Searles VB, Varki A, Gagneux P, Sikela JM. Evolution of genetic and genomic features unique to the human lineage. Nat Rev Genet. 2012;13:853–66.  https://doi.org/10.1038/nrg3336.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Haley PJ. Species differences in the structure and function of the immune system. Toxicology. 2003;188:49–71.PubMedGoogle Scholar
  5. 5.
    Zschaler J, Schlorke D, Arnhold J. Differences in innate immune response between man and mouse. Crit Rev Immunol. 2014;34:433–54.PubMedGoogle Scholar
  6. 6.
    Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.PubMedGoogle Scholar
  7. 7.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110:3507–12.  https://doi.org/10.1073/pnas.1222878110.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Perrin S. Preclinical research: make mouse studies work. Nature. 2014;507:423–5.  https://doi.org/10.1038/507423a.PubMedGoogle Scholar
  9. 9.
    Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6:114–8.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Attarwala H. TGN1412: From discovery to disaster. J Young Pharm. 2010;2:332–6.  https://doi.org/10.4103/0975-1483.66810.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Poirier N, Mary C, Dilek N, Hervouet J, Minault D, Blancho G, Vanhove B. Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent Fab’ antibody. Am J Transplant. 2012;12:2630–40.  https://doi.org/10.1111/j.1600-6143.2012.04164.x.PubMedGoogle Scholar
  12. 12.
    Weißmüller S, Kronhart S, Kreuz D, Schnierle B, Kalinke U, Kirberg J, et al. TGN1412 induces lymphopenia and human cytokine release in a humanized mouse model. PLoS One. 2016;11:e0149093.  https://doi.org/10.1371/journal.pone.0149093.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res. 1966;8:295–309.PubMedGoogle Scholar
  14. 14.
    Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301:527–30.PubMedGoogle Scholar
  15. 15.
    Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335:256–9.  https://doi.org/10.1038/335256a0.PubMedGoogle Scholar
  16. 16.
    McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241:1632–9.PubMedGoogle Scholar
  17. 17.
    Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992;255:1137–41.PubMedGoogle Scholar
  18. 18.
    Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68:869–77.PubMedGoogle Scholar
  19. 19.
    Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68:855–67.PubMedGoogle Scholar
  20. 20.
    Kumar V, Hackett J, Tutt MM, Garni-Wagner BA, Kuziel WA, Tucker PW, Bennett M. Natural killer cells and their precursors in mice with severe combined immunodeficiency. Curr Top Microbiol Immunol. 1989;152:47–52.PubMedGoogle Scholar
  21. 21.
    Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154:180–91.PubMedGoogle Scholar
  22. 22.
    Takenaka K, Prasolava TK, Wang JCY, Mortin-Toth SM, Khalouei S, Gan OI, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8:1313–23.  https://doi.org/10.1038/ni1527.PubMedGoogle Scholar
  23. 23.
    Cao X, Kozak CA, Liu YJ, Noguchi M, O’Connell E, Leonard WJ. Characterization of cDNAs encoding the murine interleukin 2 receptor (IL-2R) gamma chain: chromosomal mapping and tissue specificity of IL-2R gamma chain expression. Proc Natl Acad Sci USA. 1993;90:8464–8.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, et al. The interleukin-2 receptor gamma chain: Its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol. 1996;14:179–205.  https://doi.org/10.1146/annurev.immunol.14.1.179.PubMedGoogle Scholar
  25. 25.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.PubMedGoogle Scholar
  26. 26.
    Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol. 2008;154:270–84.  https://doi.org/10.1111/j.1365-2249.2008.03753.x.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma©(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.  https://doi.org/10.1182/blood-2001-12-0207.PubMedGoogle Scholar
  28. 28.
    Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti J-C, Lanzavecchia A, Manz MG. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304:104–7.  https://doi.org/10.1126/science.1093933.PubMedGoogle Scholar
  29. 29.
    Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol. 2010;135:84–98.  https://doi.org/10.1016/j.clim.2009.12.008.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wunderlich M, Chou F-S, Link KA, Mizukawa B, Perry RL, Carroll M, Mulloy JC. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 2010;24:1785–8.  https://doi.org/10.1038/leu.2010.158.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγ(null) humanized mice. Blood. 2011;117:3076–86.  https://doi.org/10.1182/blood-2010-08-301507.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32:364–72.  https://doi.org/10.1038/nbt.2858.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia. 2004;18:341–7.  https://doi.org/10.1038/sj.leu.2403222.PubMedGoogle Scholar
  34. 34.
    Huntington ND, Alves NL, Legrand N, Lim A, Strick-Marchand H, Mention J-J, et al. IL-15 transpresentation promotes both human T-cell reconstitution and T-cell-dependent antibody responses in vivo. Proc Natl Acad Sci USA. 2011;108:6217–22.  https://doi.org/10.1073/pnas.1019167108.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wege AK, Ernst W, Eckl J, Frankenberger B, Vollmann-Zwerenz A, Männel DN, et al. Humanized tumor mice—a new model to study and manipulate the immune response in advanced cancer therapy. Int J Cancer. 2011;129:2194–206.  https://doi.org/10.1002/ijc.26159.PubMedGoogle Scholar
  36. 36.
    Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA. 2009;106:21783–8.  https://doi.org/10.1073/pnas.0912274106.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen Q, He F, Kwang J, Chan JKY, Chen J. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J Immunol. 2012;189:5223–9.  https://doi.org/10.4049/jimmunol.1201789.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood. 2005;106:1565–73.  https://doi.org/10.1182/blood-2005-02-0516.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol. 2010;22:287–93.  https://doi.org/10.1016/j.smim.2010.04.012.PubMedGoogle Scholar
  40. 40.
    Yajima M, Imadome K-I, Nakagawa A, Watanabe S, Terashima K, Nakamura H, et al. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis. 2008;198:673–82.  https://doi.org/10.1086/590502.PubMedGoogle Scholar
  41. 41.
    Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA. 2010;107:13022–7.  https://doi.org/10.1073/pnas.1000475107.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu T-D, Casares S. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One. 2011;6:e19826.  https://doi.org/10.1371/journal.pone.0019826.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Covassin L, Laning J, Abdi R, Langevin DL, Phillips NE, Shultz LD, Brehm MA. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rγ(null) H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: A mouse model of human allogeneic graft-versus-host disease. Clin Exp Immunol. 2011;166:269–80.  https://doi.org/10.1111/j.1365-2249.2011.04462.x.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Pajot A, Michel M-L, Fazilleau N, Pancré V, Auriault C, Ojcius DM, et al. A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Eur J Immunol. 2004;34:3060–9.  https://doi.org/10.1002/eji.200425463.PubMedGoogle Scholar
  45. 45.
    Zeng Y, Liu B, Rubio M-T, Wang X, Ojcius DM, Tang R, et al. Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human immunity after transfer of HLA-matched human cells. PLoS One. 2017;12:e0173754.  https://doi.org/10.1371/journal.pone.0173754.PubMedPubMedCentralGoogle Scholar
  46. 46.
    DiSanto JP, Müller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA. 1995;92:377–81.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Salguero G, Daenthanasanmak A, Münz C, Raykova A, Guzmán CA, Riese P, et al. Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation. J Immunol. 2014;192:4636–47.  https://doi.org/10.4049/jimmunol.1302887.PubMedGoogle Scholar
  48. 48.
    Murphy WJ, Taub DD, Longo DL. The huPBL-SCID mouse as a means to examine human immune function in vivo. Semin Immunol. 1996;8:233–41.  https://doi.org/10.1006/smim.1996.0029.PubMedGoogle Scholar
  49. 49.
    King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol. 2009;157:104–18.  https://doi.org/10.1111/j.1365-2249.2009.03933.x.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12:1316–22.  https://doi.org/10.1038/nm1431.PubMedGoogle Scholar
  51. 51.
    Lan P, Tonomura N, Shimizu A, Wang S, Yang Y-G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108:487–92.  https://doi.org/10.1182/blood-2005-11-4388.PubMedGoogle Scholar
  52. 52.
    Laing ST, Griffey SM, Moreno ME, Stoddart CA. CD8-positive lymphocytes in graft-versus-host disease of humanized NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice. J Comp Pathol. 2015;152:238–42.  https://doi.org/10.1016/j.jcpa.2014.12.010.PubMedGoogle Scholar
  53. 53.
    Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A, et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA. 2010;107:7251–6.  https://doi.org/10.1073/pnas.1000302107.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, et al. Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci USA. 2013;110:3997–4002.  https://doi.org/10.1073/pnas.1220108110.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Reinisch A, Etchart N, Thomas D, Hofmann NA, Fruehwirth M, Sinha S, et al. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood. 2015;125:249–60.  https://doi.org/10.1182/blood-2014-04-572255.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Carretta M, de Boer B, Jaques J, Antonelli A, Horton SJ, Yuan H, et al. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models. Exp Hematol. 2017;51:36–46.  https://doi.org/10.1016/j.exphem.2017.04.008.PubMedGoogle Scholar
  57. 57.
    Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59:221–6.PubMedGoogle Scholar
  58. 58.
    Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69:3364–73.  https://doi.org/10.1158/0008-5472.CAN-08-4210.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:1424–31.  https://doi.org/10.1054/bjoc.2001.1796.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.  https://doi.org/10.1038/nm.3954.PubMedGoogle Scholar
  61. 61.
    Langdon SP, Hendriks HR, Braakhuis BJ, Pratesi G, Berger DP, Fodstad O, et al. Preclinical phase II studies in human tumor xenografts: a European multicenter follow-up study. Ann Oncol. 1994;5:415–22.PubMedGoogle Scholar
  62. 62.
    Mattern J, Bak M, Hahn EW, Volm M. Human tumor xenografts as model for drug testing. Cancer Metastasis Rev. 1988;7:263–84.PubMedGoogle Scholar
  63. 63.
    Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14:6456–68.  https://doi.org/10.1158/1078-0432.CCR-08-0138.PubMedGoogle Scholar
  64. 64.
    Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: Promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res. 2010;16:1442–51.  https://doi.org/10.1158/1078-0432.CCR-09-2878.PubMedGoogle Scholar
  65. 65.
    Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007;13:3989–98.  https://doi.org/10.1158/1078-0432.CCR-07-0078.PubMedGoogle Scholar
  66. 66.
    Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res. 2006;12:4652–61.  https://doi.org/10.1158/1078-0432.CCR-06-0113.PubMedGoogle Scholar
  67. 67.
    Sivanand S, Peña-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med. 2012;4:137ra75.  https://doi.org/10.1126/scitranslmed.3003643.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Fiebig H-H, Schüler J, Bausch N, Hofmann M, Metz T, Korrat A. Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Cancer Genom Proteom. 2007;4:197–209.Google Scholar
  69. 69.
    Press JZ, Kenyon JA, Xue H, Miller MA, de Luca A, Miller DM, et al. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol. 2008;110:256–64.  https://doi.org/10.1016/j.ygyno.2008.03.011.PubMedGoogle Scholar
  70. 70.
    Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 2011;17:5793–800.  https://doi.org/10.1158/1078-0432.CCR-11-0341.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1:508–23.  https://doi.org/10.1158/2159-8290.CD-11-0109.PubMedGoogle Scholar
  72. 72.
    Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer. 2013;109:926–33.  https://doi.org/10.1038/bjc.2013.415.PubMedPubMedCentralGoogle Scholar
  73. 73.
    von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29:4548–54.  https://doi.org/10.1200/JCO.2011.36.5742.Google Scholar
  74. 74.
    DeRose YS, Wang G, Lin Y-C, Bernard PS, Buys SS, Ebbert MTW, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.  https://doi.org/10.1038/nm.2454.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225:565–73.  https://doi.org/10.1002/path.2969.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73:4885–97.  https://doi.org/10.1158/0008-5472.CAN-12-4081.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 2012;135:415–32.  https://doi.org/10.1007/s10549-012-2164-8.PubMedGoogle Scholar
  78. 78.
    Guenot D, Guérin E, Aguillon-Romain S, Pencreach E, Schneider A, Neuville A, et al. Primary tumour genetic alterations and intra-tumoral heterogeneity are maintained in xenografts of human colon cancers showing chromosome instability. J Pathol. 2006;208:643–52.  https://doi.org/10.1002/path.1936.PubMedGoogle Scholar
  79. 79.
    Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goéré D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18:5314–28.  https://doi.org/10.1158/1078-0432.CCR-12-0372.PubMedGoogle Scholar
  80. 80.
    Rosfjord E, Lucas J, Li G, Gerber H-P. Advances in patient-derived tumor xenografts: From target identification to predicting clinical response rates in oncology. Biochem Pharmacol. 2014;91:135–43.  https://doi.org/10.1016/j.bcp.2014.06.008.PubMedGoogle Scholar
  81. 81.
    Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011;11:135–41.  https://doi.org/10.1038/nrc3001.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29:193–203.PubMedGoogle Scholar
  83. 83.
    Kiguchi K, Kubota T, Aoki D, Udagawa Y, Yamanouchi S, Saga M, et al. A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin Exp Metastasis. 1998;16:751–6.PubMedGoogle Scholar
  84. 84.
    Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM. A novel “patient-like” treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res. 1993;53:3070–2.PubMedGoogle Scholar
  85. 85.
    Naito S, Walker SM, Fidler IJ. In vivo selection of human renal cell carcinoma cells with high metastatic potential in nude mice. Clin Exp Metastasis. 1989;7:381–9.PubMedGoogle Scholar
  86. 86.
    Shankavaram UT, Bredel M, Burgan WE, Carter D, Tofilon P, Camphausen K. Molecular profiling indicates orthotopic xenograft of glioma cell lines simulate a subclass of human glioblastoma. J Cell Mol Med. 2012;16:545–54.  https://doi.org/10.1111/j.1582-4934.2011.01345.x.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Cutz J-C, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M, et al. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: Potential models for studying tumor progression-related changes. Clin Cancer Res. 2006;12:4043–54.  https://doi.org/10.1158/1078-0432.CCR-06-0252.PubMedGoogle Scholar
  88. 88.
    Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64:149–59.  https://doi.org/10.1002/pros.20225.PubMedGoogle Scholar
  89. 89.
    Lee C-H, Xue H, Sutcliffe M, Gout PW, Huntsman DG, Miller DM, et al. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: Potential models. Gynecol Oncol. 2005;96:48–55.  https://doi.org/10.1016/j.ygyno.2004.09.025.PubMedGoogle Scholar
  90. 90.
    Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M, et al. NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS One. 2016;11:e0163521.  https://doi.org/10.1371/journal.pone.0163521.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Ho KS, Poon PC, Owen SC, Shoichet MS. Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours. BMC Cancer. 2012;12:579.  https://doi.org/10.1186/1471-2407-12-579.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA. 2004;101:4966–71.  https://doi.org/10.1073/pnas.0401064101.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kamel-Reid S, Letarte M, Sirard C, Doedens M, Grunberger T, Fulop G, et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science. 1989;246:1597–600.PubMedGoogle Scholar
  94. 94.
    Hudson WA, Li Q, Le C, Kersey JH. Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia. 1998;12:2029–33.PubMedGoogle Scholar
  95. 95.
    Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer. 2008;123:2222–7.  https://doi.org/10.1002/ijc.23772.PubMedGoogle Scholar
  96. 96.
    Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia. 2009;23:2109–17.  https://doi.org/10.1038/leu.2009.143.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Das R, Strowig T, Verma R, Koduru S, Hafemann A, Hopf S, et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat Med. 2016;22:1351–7.  https://doi.org/10.1038/nm.4202.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25:379–92.  https://doi.org/10.1016/j.ccr.2014.01.031.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Groen RWJ, Noort WA, Raymakers RA, Prins H-J, Aalders L, Hofhuis FM, et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood. 2012;120:e9–16.  https://doi.org/10.1182/blood-2012-03-414920.PubMedGoogle Scholar
  100. 100.
    Antonelli A, Noort WA, Jaques J, de Boer B, de Jong-Korlaar R, Brouwers-Vos AZ, et al. Establishing human leukemia xenograft mouse models by implanting human bone marrow-like scaffold-based niches. Blood. 2016;128:2949–59.  https://doi.org/10.1182/blood-2016-05-719021.PubMedGoogle Scholar
  101. 101.
    Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.  https://doi.org/10.1016/j.cell.2009.05.045.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 2011;71:1374–84.  https://doi.org/10.1158/0008-5472.CAN-10-2238.PubMedGoogle Scholar
  103. 103.
    Willingham SB, Volkmer J-P, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 2012;109:6662–7.  https://doi.org/10.1073/pnas.1121623109.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Provasi E, Genovese P, Lombardo A, Magnani Z, Liu P-Q, Reik A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18:807–15.  https://doi.org/10.1038/nm.2700.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Najima Y, Tomizawa-Murasawa M, Saito Y, Watanabe T, Ono R, Ochi T, et al. Induction of WT1-specific human CD8+ T cells from human HSCs in HLA class I Tg NOD/SCID/IL2rgKO mice. Blood. 2016;127:722–34.  https://doi.org/10.1182/blood-2014-10-604777.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Chu Y, Hochberg J, Yahr A, Ayello J, van de Ven C, Barth M, et al. Targeting CD20+ aggressive B-cell non-Hodgkin lymphoma by anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice. Cancer Immunol Res. 2015;3:333–44.  https://doi.org/10.1158/2326-6066.CIR-14-0114.PubMedGoogle Scholar
  107. 107.
    Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2017.  https://doi.org/10.1038/leu.2017.226.Google Scholar
  108. 108.
    Casucci M, Di Nicolis Robilant B, Falcone L, Camisa B, Norelli M, Genovese P, et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood. 2013;122:3461–72.  https://doi.org/10.1182/blood-2013-04-493361.PubMedGoogle Scholar
  109. 109.
    Herr W, Eichinger Y, Beshay J, Bloetz A, Vatter S, Mirbeth C, et al. HLA-DPB1 mismatch alleles represent powerful leukemia rejection antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation. Leukemia. 2017;31:434–45.  https://doi.org/10.1038/leu.2016.210.PubMedGoogle Scholar
  110. 110.
    Ma S-D, Xu X, Jones R, Delecluse H-J, Zumwalde NA, Sharma A, et al. PD-1/CTLA-4 blockade inhibits epstein-barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog. 2016;12:e1005642.  https://doi.org/10.1371/journal.ppat.1005642.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Stebbing J, Paz K, Schwartz GK, Wexler LH, Maki R, Pollock RE, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 2014;120:2006–15.  https://doi.org/10.1002/cncr.28696.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, de Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther. 2011;10:1311–6.  https://doi.org/10.1158/1535-7163.MCT-11-0233.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15:311–6.  https://doi.org/10.1038/nrc3944.PubMedGoogle Scholar
  114. 114.
    Krepler C, Sproesser K, Brafford P, Beqiri M, Garman B, Xiao M, et al. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Cell Rep. 2017;21:1953–67.  https://doi.org/10.1016/j.celrep.2017.10.021.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Townsend EC, Murakami MA, Christodoulou A, Christie AL, Köster J, DeSouza TA, et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell. 2016;29:574–86.  https://doi.org/10.1016/j.ccell.2016.03.008.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Peterson JK, Houghton PJ. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer. 2004;40:837–44.  https://doi.org/10.1016/j.ejca.2004.01.003.PubMedGoogle Scholar
  117. 117.
    Ilie M, Nunes M, Blot L, Hofman V, Long-Mira E, Butori C, et al. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps. Cancer Med. 2015;4:201–11.  https://doi.org/10.1002/cam4.357.PubMedGoogle Scholar
  118. 118.
    John T, Kohler D, Pintilie M, Yanagawa N, Pham N-A, Li M, et al. The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2011;17:134–41.  https://doi.org/10.1158/1078-0432.CCR-10-2224.PubMedGoogle Scholar
  119. 119.
    Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464:999–1005.  https://doi.org/10.1038/nature08989.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518:422–6.  https://doi.org/10.1038/nature13952.PubMedGoogle Scholar
  121. 121.
    Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AMK, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science. 2013;339:543–8.  https://doi.org/10.1126/science.1227670.PubMedGoogle Scholar
  122. 122.
    Tentler JJ, Nallapareddy S, Tan AC, Spreafico A, Pitts TM, Morelli MP, et al. Identification of predictive markers of response to the MEK1/2 inhibitor selumetinib (AZD6244) in K-ras-mutated colorectal cancer. Mol Cancer Ther. 2010;9:3351–62.  https://doi.org/10.1158/1535-7163.MCT-10-0376.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Jimeno A, Tan AC, Coffa J, Rajeshkumar NV, Kulesza P, Rubio-Viqueira B, et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res. 2008;68:2841–9.  https://doi.org/10.1158/0008-5472.CAN-07-5200.PubMedGoogle Scholar
  124. 124.
    Garrido-Laguna I, Tan AC, Uson M, Angenendt M, Ma WW, Villaroel MC, et al. Integrated preclinical and clinical development of mTOR inhibitors in pancreatic cancer. Br J Cancer. 2010;103:649–55.  https://doi.org/10.1038/sj.bjc.6605819.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedGoogle Scholar
  126. 126.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.  https://doi.org/10.1073/pnas.0530291100.PubMedPubMedCentralGoogle Scholar
  127. 127.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.  https://doi.org/10.1038/nature05372.PubMedGoogle Scholar
  128. 128.
    Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–44.  https://doi.org/10.1038/nbt.2576.PubMedGoogle Scholar
  129. 129.
    Chen K, Ahmed S, Adeyi O, Dick JE, Ghanekar A. Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein-Barr virus. PLoS One. 2012;7:e39294.  https://doi.org/10.1371/journal.pone.0039294.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Simpson-Abelson MR, Sonnenberg GF, Takita H, Yokota SJ, Conway TF, Kelleher RJ, et al. Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rgamma(null) mice. J Immunol. 2008;180:7009–18.PubMedGoogle Scholar
  131. 131.
    Williams SS, Chen FA, Kida H, Yokata S, Miya K, Kato M, et al. Engraftment of human tumor-infiltrating lymphocytes and the production of anti-tumor antibodies in SCID mice. J Immunol. 1996;156:1908–15.PubMedGoogle Scholar
  132. 132.
    Abate-Daga D, Lagisetty KH, Tran E, Zheng Z, Gattinoni L, Yu Z, et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther. 2014;25:1003–12.  https://doi.org/10.1089/hum.2013.209.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31:71–5.  https://doi.org/10.1038/nbt.2459.PubMedGoogle Scholar
  134. 134.
    Shirakura Y, Mizuno Y, Wang L, Imai N, Amaike C, Sato E, et al. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/γcnull mice. Cancer Sci. 2012;103:17–25.  https://doi.org/10.1111/j.1349-7006.2011.02111.x.PubMedGoogle Scholar
  135. 135.
    Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP, Kelderman S, et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 2012;72:1844–52.  https://doi.org/10.1158/0008-5472.CAN-11-3890.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep. 2015;5:11483.  https://doi.org/10.1038/srep11483.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sanmamed MF, Rodriguez I, Schalper KA, Oñate C, Azpilikueta A, Rodriguez-Ruiz ME, et al. Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice. Cancer Res. 2015;75:3466–78.  https://doi.org/10.1158/0008-5472.CAN-14-3510.PubMedGoogle Scholar
  138. 138.
    Fisher TS, Kamperschroer C, Oliphant T, Love VA, Lira PD, Doyonnas R, et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunother. 2012;61:1721–33.  https://doi.org/10.1007/s00262-012-1237-1.PubMedGoogle Scholar
  139. 139.
    England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, et al. (89)Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging. 2017.  https://doi.org/10.1007/s00259-017-3803-4.Google Scholar
  140. 140.
    Seitz G, Pfeiffer M, Fuchs J, Warmann SW, Leuschner I, Vokuhl C, et al. Establishment of a rhabdomyosarcoma xenograft model in human-adapted mice. Oncol Rep. 2010;24:1067–72.PubMedGoogle Scholar
  141. 141.
    Wege AK, Schmidt M, Ueberham E, Ponnath M, Ortmann O, Brockhoff G, Lehmann J. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies. MAbs. 2014;6:968–77.  https://doi.org/10.4161/mabs.29111.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Wege AK, Weber F, Kroemer A, Ortmann O, Nimmerjahn F, Brockhoff G. IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget. 2017;8:2731–44.  https://doi.org/10.18632/oncotarget.13159.PubMedGoogle Scholar
  143. 143.
    Wang M, Yao L-C, Cheng M, Cai D, Martinek J, Pan C-X, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 2017.  https://doi.org/10.1096/fj.201700740R.Google Scholar
  144. 144.
    Yao L-C, Riess J, Cheng M, Wang M, Banchereau J, Shultz L, et al. Patient-derived tumor xenografts in humanized NSG-SGM3 mice: a new immuno-oncology platform. J Clin Oncol. 2016;34:3074.  https://doi.org/10.1200/JCO.2016.34.15_suppl.3074.Google Scholar
  145. 145.
    Vatakis DN, Koya RC, Nixon CC, Wei L, Kim SG, Avancena P, et al. Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc Natl Acad Sci USA. 2011;108:E1408–16.  https://doi.org/10.1073/pnas.1115050108.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK, Szalay AA. Humanized mice with subcutaneous human solid tumors for immune response analysis of vaccinia virus-mediated oncolysis. Mol Ther Oncolytics. 2017;5:41–61.  https://doi.org/10.1016/j.omto.2017.03.001.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Werner-Klein M, Proske J, Werno C, Schneider K, Hofmann H-S, Rack B, et al. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients. PLoS One. 2014;9:e97860.  https://doi.org/10.1371/journal.pone.0097860.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, et al. XactMice: Humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 2016;35:290–300.  https://doi.org/10.1038/onc.2015.94.PubMedGoogle Scholar
  149. 149.
    Lee J, Dykstra B, Spencer JA, Kenney LL, Greiner DL, Shultz LD, et al. mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell-derived hematopoietic progenitors. J Clin Invest. 2017;127:2433–7.  https://doi.org/10.1172/JCI92030.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Clarke R. Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat. 1996;39:69–86.PubMedGoogle Scholar
  151. 151.
    Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S, et al. NOD/LtSz-Rag1null mice: An immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol. 2000;164:2496–507.PubMedGoogle Scholar
  152. 152.
    Weijer K, Uittenbogaart CH, Voordouw A, Couwenberg F, Seppen J, Blom B, et al. Intrathymic and extrathymic development of human plasmacytoid dendritic cell precursors in vivo. Blood. 2002;99:2752–9.PubMedGoogle Scholar
  153. 153.
    Carreno BM, Garbow JR, Kolar GR, Jackson EN, Engelbach JA, Becker-Hapak M, et al. Immunodeficient mouse strains display marked variability in growth of human melanoma lung metastases. Clin Cancer Res. 2009;15:3277–86.  https://doi.org/10.1158/1078-0432.CCR-08-2502.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood. 2011;118:3119–28.  https://doi.org/10.1182/blood-2010-12-326926.PubMedGoogle Scholar
  155. 155.
    Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A, et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rγ null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood. 2012;119:2778–88.  https://doi.org/10.1182/blood-2011-05-353243.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Beyer AI, Muench MO. Comparison of human hematopoietic reconstitution in different strains of immunodeficient mice. Stem Cells Dev. 2017;26:102–12.  https://doi.org/10.1089/scd.2016.0083.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Kametani Y, Katano I, Miyamoto A, Kikuchi Y, Ito R, Muguruma Y, et al. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination. PLoS ONE. 2017;12:e0179239.  https://doi.org/10.1371/journal.pone.0179239.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Yu H, Borsotti C, Schickel J-N, Zhu S, Strowig T, Eynon EE, et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood. 2017;129:959–69.  https://doi.org/10.1182/blood-2016-04-709584.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A. 2011;108:2378–83.  https://doi.org/10.1073/pnas.1019524108.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Yao LC, Cheng M, Shultz L, Greiner D, Keck J, Brehm M. NSG™-Quad mice, a new humanized mouse model with improved human innate immune cell development. Eur J Cancer. 2016;69:S113.  https://doi.org/10.1016/S0959-8049(16)32936-7.Google Scholar
  161. 161.
    Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990;172:1055–63.PubMedGoogle Scholar
  162. 162.
    Fleming JM, Miller TC, Meyer MJ, Ginsburg E, Vonderhaar BK. Local regulation of human breast xenograft models. J Cell Physiol. 2010;224:795–806.  https://doi.org/10.1002/jcp.22190.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24:120–9.  https://doi.org/10.1016/j.ccr.2013.06.002.PubMedGoogle Scholar
  164. 164.
    Kim J, Villadsen R, Sørlie T, Fogh L, Grønlund SZ, Fridriksdottir AJ, et al. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A. 2012;109:6124–9.  https://doi.org/10.1073/pnas.1203203109.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Oakes SR, Vaillant F, Lim E, Lee L, Breslin K, Feleppa F, et al. Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc Natl Acad Sci U S A. 2012;109:2766–71.  https://doi.org/10.1073/pnas.1104778108.PubMedGoogle Scholar
  166. 166.
    Herrero A, Pinto A, Colón-Bolea P, Casar B, Jones M, Agudo-Ibáñez L, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28:170–82.  https://doi.org/10.1016/j.ccell.2015.07.001.PubMedGoogle Scholar
  167. 167.
    Zhang L, Yang J, Cai J, Song X, Deng J, Huang X, et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Sci Rep. 2013;3:2992.  https://doi.org/10.1038/srep02992.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Guo S, Chen D, Huang X, Cai J, Wery J-P, Li Q-X. Cetuximab response in CRC patient-derived xenografts seems predicted by an expression based RAS pathway signature. Oncotarget. 2016;7:50575–81.  https://doi.org/10.18632/oncotarget.10499.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Schmieder R, Hoffmann J, Becker M, Bhargava A, Müller T, Kahmann N, et al. Regorafenib (BAY 73–4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J Cancer. 2014;135:1487–96.  https://doi.org/10.1002/ijc.28669.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Wang CJ, Tong PJ, Zhu MY. The combinational therapy of trastuzumab and cetuximab inhibits tumor growth in a patient-derived tumor xenograft model of gastric cancer. Clin Transl Oncol. 2016;18:507–14.  https://doi.org/10.1007/s12094-015-1397-5.PubMedGoogle Scholar
  171. 171.
    Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SAA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–54.  https://doi.org/10.1073/pnas.1014480108.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, et al. Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro-oncology. 2009;11:158–66.  https://doi.org/10.1215/15228517-2008-072.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Huynh H, Soo KC, Chow PKH, Panasci L, Tran E. Xenografts of human hepatocellular carcinoma: A useful model for testing drugs. Clin Cancer Res. 2006;12:4306–14.  https://doi.org/10.1158/1078-0432.CCR-05-2568.PubMedGoogle Scholar
  174. 174.
    Martin-Padura I, Marighetti P, Agliano A, Colombo F, Larzabal L, Redrado M, et al. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab Invest. 2012;92:952–66.  https://doi.org/10.1038/labinvest.2012.65.PubMedGoogle Scholar
  175. 175.
    Hammer S, Sommer A, Fichtner I, Becker M, Rolff J, Merk J, et al. Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res. 2010;16:1452–65.  https://doi.org/10.1158/1078-0432.CCR-09-2455.PubMedGoogle Scholar
  176. 176.
    Némati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L, et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin Cancer Res. 2010;16:2352–62.  https://doi.org/10.1158/1078-0432.CCR-09-3066.PubMedGoogle Scholar
  177. 177.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8.  https://doi.org/10.1038/nature07567.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Girotti MR, Lopes F, Preece N, Niculescu-Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85–96.  https://doi.org/10.1016/j.ccell.2014.11.006.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Kolfschoten GM, Pinedo HM, Scheffer PG, Schlüper HM, Erkelens CA, Boven E. Development of a panel of 15 human ovarian cancer xenografts for drug screening and determination of the role of the glutathione detoxification system. Gynecol Oncol. 2000;76:362–8.  https://doi.org/10.1006/gyno.1999.5689.PubMedGoogle Scholar
  180. 180.
    Kortmann U, McAlpine JN, Xue H, Guan J, Ha G, Tully S, et al. Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts. Clin Cancer Res. 2011;17:783–91.  https://doi.org/10.1158/1078-0432.CCR-10-1382.PubMedGoogle Scholar
  181. 181.
    Stewart JM, Shaw PA, Gedye C, Bernardini MQ, Neel BG, Ailles LE. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci U S A. 2011;108:6468–73.  https://doi.org/10.1073/pnas.1005529108.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Kimple RJ, Harari PM, Torres AD, Yang RZ, Soriano BJ, Yu M, et al. Development and characterization of HPV-positive and HPV-negative head and neck squamous cell carcinoma tumorgrafts. Clin Cancer Res. 2013;19:855–64.  https://doi.org/10.1158/1078-0432.CCR-12-2746.PubMedGoogle Scholar
  183. 183.
    Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ, et al. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol. 2013;7:776–90.  https://doi.org/10.1016/j.molonc.2013.03.004.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc. 2014;2014:694–708.  https://doi.org/10.1101/pdb.top073585.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P. Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol. 2017;10:106.  https://doi.org/10.1186/s13045-017-0470-7.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Cany J, van der Waart AB, Tordoir M, Franssen GM, Hangalapura BN, Vries J de, et al. Natural killer cells generated from cord blood hematopoietic progenitor cells efficiently target bone marrow-residing human leukemia cells in NOD/SCID/IL2Rg(null) mice. PLoS ONE. 2013;8:e64384.  https://doi.org/10.1371/journal.pone.0064384.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22:3440–50.  https://doi.org/10.1158/1078-0432.CCR-15-2710.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Ito A, Ishida T, Utsunomiya A, Sato F, Mori F, Yano H, et al. Defucosylated anti-CCR4 monoclonal antibody exerts potent ADCC against primary ATLL cells mediated by autologous human immune cells in NOD/Shi-scid, IL-2R gamma(null) mice in vivo. J Immunol. 2009;183:4782–91.  https://doi.org/10.4049/jimmunol.0900699.PubMedGoogle Scholar
  189. 189.
    Xue S-A, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood. 2005;106:3062–7.  https://doi.org/10.1182/blood-2005-01-0146.PubMedGoogle Scholar
  190. 190.
    Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PEM, Simone R, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117:5463–72.  https://doi.org/10.1182/blood-2010-12-324210.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, et al. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med. 2001;7:452–8.  https://doi.org/10.1038/86523.PubMedGoogle Scholar
  192. 192.
    Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol. 2003;21:405–13.  https://doi.org/10.1038/nbt805.PubMedGoogle Scholar
  193. 193.
    Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22:3286–97.  https://doi.org/10.1158/1078-0432.CCR-15-1696.PubMedGoogle Scholar
  194. 194.
    Veluchamy JP, Lopez-Lastra S, Spanholtz J, Bohme F, Kok N, Heideman DAM, et al. In vivo efficacy of umbilical cord blood stem cell-derived NK cells in the treatment of metastatic colorectal cancer. Front Immunol. 2017;8:87.  https://doi.org/10.3389/fimmu.2017.00087.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Wulf-Goldenberg A, Eckert K, Fichtner I. Intrahepatically transplanted human cord blood cells reduce SW480 tumor growth in the presence of bispecific EpCAM/CD3 antibody. Cytotherapy. 2011;13:108–13.  https://doi.org/10.3109/14653249.2010.515577.PubMedGoogle Scholar
  196. 196.
    Lee SJ, Kang WY, Yoon Y, Jin JY, Song HJ, Her JH, et al. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain. BMC Cancer. 2015;15:1011.  https://doi.org/10.1186/s12885-015-2034-y.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D’Apuzzo M, et al. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin Cancer Res. 2012;18:2199–209.  https://doi.org/10.1158/1078-0432.CCR-11-1669.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Ames E, Canter RJ, Grossenbacher SK, Mac S, Chen M, Smith RC, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol. 2015;195:4010–9.  https://doi.org/10.4049/jimmunol.1500447.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Hu Z, Xia J, Fan W, Wargo J, Yang Y-G. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice. Oncotarget. 2016;7:6448–59.  https://doi.org/10.18632/oncotarget.7044.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126:3130–44.  https://doi.org/10.1172/JCI83092.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6:261ra151.  https://doi.org/10.1126/scitranslmed.3010162.Google Scholar
  202. 202.
    Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010;70:9053–61.  https://doi.org/10.1158/0008-5472.CAN-10-2880.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Moon EK, Carpenito C, Sun J, Wang L-CS, Kapoor V, Predina J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res. 2011;17:4719–30.  https://doi.org/10.1158/1078-0432.CCR-11-0351.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Kaur K, Cook J, Park S-H, Topchyan P, Kozlowska A, Ohanian N, et al. Novel strategy to expand super-charged NK cells with significant potential to lyse and differentiate cancer stem cells: differences in NK expansion and function between healthy and cancer patients. Front Immunol. 2017;8:297.  https://doi.org/10.3389/fimmu.2017.00297.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Geller MA, Knorr DA, Hermanson DA, Pribyl L, Bendzick L, McCullar V, et al. Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy. 2013;15:1297–306.  https://doi.org/10.1016/j.jcyt.2013.05.022.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Roth MD, Harui A. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model. J Immunother Cancer. 2015;3:12.  https://doi.org/10.1186/s40425-015-0056-2.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Chang D-K, Moniz RJ, Xu Z, Sun J, Signoretti S, Zhu Q, Marasco WA. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015;14:119.  https://doi.org/10.1186/s12943-015-0384-3.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Schilbach K, Alkhaled M, Welker C, Eckert F, Blank G, Ziegler H, et al. Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. Oncoimmunology. 2015;4:e1014760.  https://doi.org/10.1080/2162402X.2015.1014760.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Liu D, Song L, Wei J, Courtney AN, Gao X, Marinova E, et al. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest. 2012;122:2221–33.  https://doi.org/10.1172/JCI59535.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Gynecology and ObstetricsUniversity Medical Center RegensburgRegensburgGermany

Personalised recommendations