, Volume 32, Issue 2, pp 99–109 | Cite as

Targeting Neoantigens for Personalised Immunotherapy

  • Antonia L. Pritchard
Leading Article


This review discusses the rapidly evolving field of immunotherapy research, focusing on the types of cancer antigens that can be recognised by the immune system and potential methods by which neoantigens can be exploited clinically to successfully target and clear tumour cells. Recent studies suggest that the likelihood of successful immunotherapeutic targeting of cancer will be reliant on immune response to neoantigens. This type of cancer-specific antigen arises from somatic variants that result in alteration of the expressed protein sequence. Massively parallel sequencing techniques now allow the rapid identification of these genomic mutations, and algorithms can be used to predict those that will be processed by the proteasome, bind to the transporter complex and encode peptides that bind strongly to individual MHC molecules. The emerging data from assessment of the immunogenicity of neoantigens suggests that only a minority of mutations will form targetable epitopes and therefore the potential for immunotherapeutic targeting will be greater in cancers with a higher frequency of protein-altering somatic variants. It is evident that neoantigens contribute to the success of some immunotherapeutic interventions and that there is significant scope for specific targeting of these antigens to develop new treatment approaches.



This review brings together a large amount of work in a rapidly developing area in order to provide an overall picture of the current state of the field. As a result, there are recommendations throughout to review papers that focus in on a specific area, which will provide further details on those topics. I apologise to colleagues who may feel their work is inadequately cited, or that further details should have been provided, but for space and clarity this review could only use selected specific examples.

Compliance with Ethical Standards


ALP is supported by Highland and Island Enterprise, Scotland.

Conflicts of interest

ALP has no conflicts of interests to declare.


  1. 1.
    Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80. (Epub 2008/05/13, PubMed PMID: 18469827).CrossRefPubMedGoogle Scholar
  2. 2.
    Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimaraes F, Burt BM, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829. (Epub 2017/08/22, PubMed PMID: 28824608; PubMed Central PMCID: PMCPMC5539135).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62(5):309–35. (Epub 2012/05/12, PubMed PMID: 22576456; PubMed Central PMCID: PMCPMC3445708).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71. (PubMed PMID: 21219185).CrossRefPubMedGoogle Scholar
  5. 5.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. (PubMed PMID: 21436444).CrossRefPubMedGoogle Scholar
  6. 6.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25. (Epub 2014/02/18, PubMed PMID: 24531241; PubMed Central PMCID: PMCPMC4388310).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer. 2016;2(12):747–57. (PubMed PMID: 28626801; PubMed Central PMCID: PMC5472356).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ellsworth RE, Ellsworth DL, Patney HL, Deyarmin B, Love B, Hooke JA, et al. Amplification of HER2 is a marker for global genomic instability. BMC Cancer. 2008;8:297. (PubMed PMID: 18854030; PubMed Central PMCID: PMC2571108).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. (PubMed PMID: 23210908; PubMed Central PMCID: PMC3520838).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1993;178(2):489–95 (PubMed PMID: 8340755; PubMed Central PMCID: PMC2191123).CrossRefPubMedGoogle Scholar
  11. 11.
    Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25. (PubMed PMID: 16034368).CrossRefPubMedGoogle Scholar
  12. 12.
    Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, Lucas S. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001;61(14):5544–51 (PubMed PMID: 11454705).PubMedGoogle Scholar
  13. 13.
    Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E, et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res. 2006;95:1–30. (PubMed PMID: 16860654).CrossRefPubMedGoogle Scholar
  14. 14.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.<12:AID-PATH431>3.0.CO;2-F (PubMed PMID: 10451482).Google Scholar
  15. 15.
    Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92(9):709–20 (PubMed PMID: 10793107).CrossRefPubMedGoogle Scholar
  16. 16.
    De Plaen E, Lurquin C, Van Pel A, Mariame B, Szikora JP, Wolfel T, et al. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum-mutation. Proc Natl Acad Sci USA. 1988;85(7):2274–8 (Epub 1988/04/01, PubMed PMID: 3127830; PubMed Central PMCID: PMCPMC279973).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Monach PA, Meredith SC, Siegel CT, Schreiber H. A unique tumor antigen produced by a single amino acid substitution. Immunity. 1995;2(1):45–59 (Epub 1995/01/01 PubMed PMID: 7600302).CrossRefPubMedGoogle Scholar
  18. 18.
    Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol. 2008;20(5):286–95. (Epub 2008/10/28, PubMed PMID: 18951039).CrossRefPubMedGoogle Scholar
  19. 19.
    Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 2005;102(44):16013–8. (PubMed PMID: 16247014; PubMed Central PMCID: PMC1266037).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74. (Epub 2006/09/09, PubMed PMID: 16959974).CrossRefPubMedGoogle Scholar
  21. 21.
    Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 2008;68(3):889–92. (Epub 2008/02/05, PubMed PMID: 18245491).CrossRefPubMedGoogle Scholar
  22. 22.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51. (Epub 2016/05/18, PubMed PMID: 27184599).CrossRefPubMedGoogle Scholar
  23. 23.
    Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annual review of immunology. 2013;31:443–73. (PubMed PMID: 23298205; PubMed Central PMCID: PMC4026165).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol. 2010;2(4):a005140. (PubMed PMID: 20452950; PubMed Central PMCID: PMC2845206).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Uebel S, Tampe R. Specificity of the proteasome and the TAP transporter. Curr Opin Immunol. 1999;11(2):203–8 (Epub 1999/05/14 PubMed PMID: 10322157).CrossRefPubMedGoogle Scholar
  26. 26.
    Lehnert E, Tampe R. Structure and dynamics of antigenic peptides in complex with TAP. Front Immunol. 2017;8:10. (Epub 2017/02/15, PubMed PMID: 28194151; PubMed Central PMCID: PMCPMC5277011).PubMedPubMedCentralGoogle Scholar
  27. 27.
    Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol. 2012;42(12):3174–9. (Epub 2012/09/06, PubMed PMID: 22949370; PubMed Central PMCID: PMCPMC3776049).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, et al. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol. 2015;180(2):255–70. (Epub 2014/12/17, PubMed PMID: 25496365; PubMed Central PMCID: PMCPMC4408161).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pritchard AL, Burel JG, Neller MA, Hayward NK, Lopez JA, Fatho M, et al. Exome sequencing to predict neoantigens in melanoma. Cancer Immunol Res. 2015;3(9):992–8. (PubMed PMID: 26048577).CrossRefPubMedGoogle Scholar
  30. 30.
    Lupetti R, Pisarra P, Verrecchia A, Farina C, Nicolini G, Anichini A, et al. Translation of a retained intron in tyrosinase-related protein (TRP) 2 mRNA generates a new cytotoxic T lymphocyte (CTL)-defined and shared human melanoma antigen not expressed in normal cells of the melanocytic lineage. J Exp Med. 1998;188(6):1005–16 (PubMed PMID: 9743519; PubMed Central PMCID: PMC2212536).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Skipper JC, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y, et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med. 1996;183(2):527–34 (PubMed PMID: 8627164; PubMed Central PMCID: PMC2192446).CrossRefPubMedGoogle Scholar
  32. 32.
    Chang TC, Carter RA, Li Y, Li Y, Wang H, Edmonson MN, et al. The neoepitope landscape in pediatric cancers. Genome Med. 2017;9(1):78. (PubMed PMID: 28854978; PubMed Central PMCID: PMC5577668).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, et al. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93(1):6–11. (Epub 2001/06/08, PubMed PMID: 11391614).CrossRefPubMedGoogle Scholar
  34. 34.
    Pritchard AL, Hastie ML, Neller M, Gorman JJ, Schmidt CW, Hayward NK. Exploration of peptides bound to MHC class I molecules in melanoma. Pigment Cell Melanoma Res. 2015;28(3):281–94. PubMed PMID: 25645385.CrossRefPubMedGoogle Scholar
  35. 35.
    Bassani-Sternberg M, Braunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun. 2016;7:13404. (PubMed PMID: 27869121; PubMed Central PMCID: PMC5121339).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity. 2017;46(2):315–26. (PubMed PMID: 28228285; PubMed Central PMCID: PMC5405381).CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gloger A, Ritz D, Fugmann T, Neri D. Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes. Cancer Immunol Immunother CII. 2016;65(11):1377–93. (PubMed PMID: 27600516; PubMed Central PMCID: PMC5509013).CrossRefPubMedGoogle Scholar
  38. 38.
    Jarmalavicius S, Welte Y, Walden P. High immunogenicity of the human leukocyte antigen peptidomes of melanoma tumor cells. J Biol Chem. 2012;287(40):33401–11. (PubMed PMID: 22869377; PubMed Central PMCID: PMC3460442).CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–6. (PubMed PMID: 25428506).CrossRefPubMedGoogle Scholar
  40. 40.
    Hogan KT, Eisinger DP, Cupp SB 3rd, Lekstrom KJ, Deacon DD, Shabanowitz J, et al. The peptide recognized by HLA-A68.2-restricted, squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Cancer Res. 1998;58(22):5144–50 (Epub 1998/11/21 PubMed PMID: 9823325).PubMedGoogle Scholar
  41. 41.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81. (Epub 2014/11/28, PubMed PMID: 25428507; PubMed Central PMCID: PMCPMC4279952).CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–8. (Epub 2015/04/04, PubMed PMID: 25837513; PubMed Central PMCID: PMCPMC4549796).CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sharkey MS, Lizee G, Gonzales MI, Patel S, Topalian SL. CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res. 2004;64(5):1595–9 (PubMed PMID: 14996715).CrossRefPubMedGoogle Scholar
  44. 44.
    Somasundaram R, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P, et al. Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res. 2006;66(6):3287–93. (PubMed PMID: 16540682).CrossRefPubMedGoogle Scholar
  45. 45.
    Bergmann-Leitner ES, Kantor JA, Shupert WL, Schlom J, Abrams SI. Identification of a human CD8+ T lymphocyte neo-epitope created by a ras codon 12 mutation which is restricted by the HLA-A2 allele. Cell Immunol. 1998;187(2):103–16. (PubMed PMID: 9732698).CrossRefPubMedGoogle Scholar
  46. 46.
    Shono Y, Tanimura H, Iwahashi M, Tsunoda T, Tani M, Tanaka H, et al. Specific T-cell immunity against Ki-ras peptides in patients with pancreatic and colorectal cancers. Br J Cancer. 2003;88(4):530–6. (PubMed PMID: 12592366; PubMed Central PMCID: PMC2377177).CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ichiki Y, Takenoyama M, Mizukami M, So T, Sugaya M, Yasuda M, et al. Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol. 2004;172(8):4844–50 (PubMed PMID: 15067062).CrossRefPubMedGoogle Scholar
  48. 48.
    Linard B, Bezieau S, Benlalam H, Labarriere N, Guilloux Y, Diez E, et al. A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol. 2002;168(9):4802–8 (PubMed PMID: 11971032).CrossRefPubMedGoogle Scholar
  49. 49.
    Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, et al. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci. 2017;108(2):170–7. (PubMed PMID: 27960040; PubMed Central PMCID: PMC5329159).CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013;31(32):e439–42. (PubMed PMID: 24043743; PubMed Central PMCID: PMC3836220).CrossRefPubMedGoogle Scholar
  51. 51.
    Schuler MM, Nastke MD, Stevanovikc S. SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol. 2007;409:75–93 (PubMed PMID: 18449993).CrossRefPubMedGoogle Scholar
  52. 52.
    Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol. 2002;63(9):701–9 (PubMed PMID: 12175724).CrossRefPubMedGoogle Scholar
  53. 53.
    Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199(9):3360–8. (PubMed PMID: 28978689).CrossRefPubMedGoogle Scholar
  54. 54.
    Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012;64(3):177–86. (PubMed PMID: 22009319).CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang H, Lund O, Nielsen M. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics. 2009;25(10):1293–9. (PubMed PMID: 19297351; PubMed Central PMCID: PMC2732311).CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Singh SP, Mishra BN. Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network. Bioinformation. 2008;3(4):150–5 (PubMed PMID: 19238237; PubMed Central PMCID: PMC2639663).CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinform. 2005;6:132. (PubMed PMID: 15927070; PubMed Central PMCID: PMC1173087).CrossRefGoogle Scholar
  58. 58.
    Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 2016;8(1):11. (Epub 2016/01/31; PubMed PMID: 26825632; PubMed Central PMCID: PMCPMC4733280).CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tappeiner E, Finotello F, Charoentong P, Mayer C, Rieder D, Trajanoski Z. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics. 2017;33(19):3140–1. (Epub 2017/06/22; PubMed PMID: 28633385).CrossRefPubMedGoogle Scholar
  60. 60.
    Bais P, Namburi S, Gatti DM, Zhang X, Chuang JH. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens. Bioinformatics. 2017;33(19):3110–2. (Epub 2017/06/13; PubMed PMID: 28605406).CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bjerregaard AM, Nielsen M, Hadrup SR, Szallasi Z, Eklund AC. MuPeXI: prediction of neo-epitopes from tumor sequencing data. Cancer Immunol Immunother. 2017;66(9):1123–30. (Epub 2017/04/22; PubMed PMID: 28429069).CrossRefPubMedGoogle Scholar
  62. 62.
    Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–5. (PubMed PMID: 24812403).CrossRefPubMedGoogle Scholar
  63. 63.
    Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 2014;20(13):3401–10. (PubMed PMID: 24987109; PubMed Central PMCID: PMC4083471).CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015;350(6266):1387–90. (PubMed PMID: 26516200).CrossRefPubMedGoogle Scholar
  65. 65.
    Mennonna D, Maccalli C, Romano MC, Garavaglia C, Capocefalo F, Bordoni R, et al. T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut. 2017;66(3):454–63. (PubMed PMID: 26681737; PubMed Central PMCID: PMC5534766).CrossRefPubMedGoogle Scholar
  66. 66.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22(4):433–8. (PubMed PMID: 26901407).CrossRefPubMedGoogle Scholar
  67. 67.
    Stronen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science. 2016;352(6291):1337–41. (PubMed PMID: 27198675).CrossRefPubMedGoogle Scholar
  68. 68.
    Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Investig. 2015;125(10):3981–91. (PubMed PMID: 26389673; PubMed Central PMCID: PMCPMC4607110).CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62. (PubMed PMID: 24891321; PubMed Central PMCID: PMC4102716).CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sun Z, Chen F, Meng F, Wei J, Liu B. MHC class II restricted neoantigen: a promising target in tumor immunotherapy. Cancer Lett. 2017;392:17–25. (Epub 2017/01/21; PubMed PMID: 28104443).CrossRefPubMedGoogle Scholar
  71. 71.
    Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015;21(1):81–5. (PubMed PMID: 25531942).CrossRefPubMedGoogle Scholar
  72. 72.
    Pieper R, Christian RE, Gonzales MI, Nishimura MI, Gupta G, Settlage RE, et al. Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells. J Exp Med. 1999;189(5):757–66 (Epub 1999/03/02. PubMed PMID: 10049939; PubMed Central PMCID: PMCPMC2192954).CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wang RF, Wang X, Atwood AC, Topalian SL, Rosenberg SA. Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science. 1999;284(5418):1351–4 (Epub 1999/05/21 PubMed PMID: 10334988).CrossRefPubMedGoogle Scholar
  74. 74.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8. (PubMed PMID: 25765070; PubMed Central PMCID: PMC4993154).CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99. (PubMed PMID: 25409260; PubMed Central PMCID: PMC4315319).CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11. (PubMed PMID: 26359337; PubMed Central PMCID: PMC5054517).CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9. (PubMed PMID: 26940869; PubMed Central PMCID: PMC4984254).CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ock CY, Hwang JE, Keam B, Kim SB, Shim JJ, Jang HJ, et al. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat Commun. 2017;8(1):1050. (PubMed PMID: 29051489; PubMed Central PMCID: PMC5648801).CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19(6):747–52. (PubMed PMID: 23644516; PubMed Central PMCID: PMC3757932).CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24(5):743–50. (PubMed PMID: 24782321; PubMed Central PMCID: PMC4009604).CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4. (PubMed PMID: 22318521; PubMed Central PMCID: PMC3874809).CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-oncology. 2017;19(8):1047–57. (PubMed PMID: 28371827; PubMed Central PMCID: PMC5570198).CrossRefPubMedGoogle Scholar
  83. 83.
    Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512–6. (Epub 2017/11/14; PubMed PMID: 29132146).PubMedGoogle Scholar
  84. 84.
    O’Rourke MG, Johnson M, Lanagan C, See J, Yang J, Bell JR, et al. Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother. 2003;52(6):387–95. (Epub 2003/04/19; PubMed PMID: 12682787).PubMedGoogle Scholar
  85. 85.
    O’Rourke MG, Johnson MK, Lanagan CM, See JL, O’Connor LE, Slater GJ, et al. Dendritic cell immunotherapy for stage IV melanoma. Melanoma Res. 2007;17(5):316–22. (Epub 2007/09/22; PubMed PMID: 17885587).CrossRefPubMedGoogle Scholar
  86. 86.
    Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375(23):2255–62. (PubMed PMID: 27959684; PubMed Central PMCID: PMC5178827).CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, Andersen RS, et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. 2016;536(7614):91–5. (Epub 2016/06/29; PubMed PMID: 27350335).CrossRefPubMedGoogle Scholar
  88. 88.
    Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–20. (Epub 2017/11/14; PubMed PMID: 29132144).PubMedGoogle Scholar
  89. 89.
    Lauss M, Donia M, Harbst K, Andersen R, Mitra S, Rosengren F, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun. 2017;8(1):1738. (Epub 2017/11/25; PubMed PMID: 29170503; PubMed Central PMCID: PMCPMC5701046).CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. (PubMed PMID: 21830940; PubMed Central PMCID: PMC3387277).CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. (PubMed PMID: 23527958; PubMed Central PMCID: PMC4058440).CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. (PubMed PMID: 25317870; PubMed Central PMCID: PMC4267531).CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. (PubMed PMID: 20179677; PubMed Central PMCID: PMC2862534).CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51. (PubMed PMID: 23377668; PubMed Central PMCID: PMC3581823).CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chu CT, Everiss KD, Wikstrand CJ, Batra SK, Kung HJ, Bigner DD. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J. 1997;324(Pt 3):855–61 (PubMed PMID: 9210410; PubMed Central PMCID: PMC1218502).CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA. 1992;89(7):2965–9 (PubMed PMID: 1557402; PubMed Central PMCID: PMC48784).CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sok JC, Coppelli FM, Thomas SM, Lango MN, Xi S, Hunt JL, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12(17):5064–73. (PubMed PMID: 16951222).CrossRefPubMedGoogle Scholar
  98. 98.
    Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–53. (PubMed PMID: 22780919; PubMed Central PMCID: PMC3472555).CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol. 2017;48:142–52. (Epub 2017/05/12; PubMed PMID: 28494274).CrossRefPubMedGoogle Scholar
  100. 100.
    Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–40. (Epub 2017/02/12; PubMed PMID: 28187291; PubMed Central PMCID: PMCPMC5553442).CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Burrows SR, Miles JJ. Immune parameters to consider when choosing T-cell receptors for therapy. Front Immunol. 2013;4:229. (Epub 2013/08/13; PubMed PMID: 23935599; PubMed Central PMCID: PMCPMC3733007).CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med. 2008;358(25):2698–703. (PubMed PMID: 18565862; PubMed Central PMCID: PMC3277288).CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. (PubMed PMID: 21498393; PubMed Central PMCID: PMC3131487).CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4. (PubMed PMID: 12242449; PubMed Central PMCID: PMCPMC1764179).CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9. (PubMed PMID: 18809613; PubMed Central PMCID: PMC2652090).CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev. 2006;58(8):931–47. (PubMed PMID: 17030074).CrossRefPubMedGoogle Scholar
  107. 107.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21. (Epub 2017/07/06; PubMed PMID: 28678778; PubMed Central PMCID: PMCPMC5577644).CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Tsukahara T, Hirohashi Y, Kanaseki T, Nakatsugawa M, Kubo T, Sato N, et al. Peptide vaccination therapy: towards the next generation. Pathol Int. 2016;66(10):547–53. (PubMed PMID: 27435148).CrossRefPubMedGoogle Scholar
  109. 109.
    Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28(7):319–28. (PubMed PMID: 27235694).CrossRefPubMedGoogle Scholar
  110. 110.
    Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7(10):790–802. (Epub 2007/09/15; PubMed PMID: 17853902).CrossRefPubMedGoogle Scholar
  111. 111.
    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6. (PubMed PMID: 28678784).CrossRefPubMedGoogle Scholar
  112. 112.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23. (PubMed PMID: 28187290; PubMed Central PMCID: PMC5391692).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genetics and Immunology Research GroupAn LòchranInvernessScotland, UK

Personalised recommendations