Skip to main content

HER3 as a Therapeutic Target in Cancer

Abstract

Targeting members of the human epidermal growth factor receptor family, especially EGFR and HER2, has been an established strategy for the treatment of tumors with abnormally activated receptors due to overexpression, mutation, ligand-dependent receptor dimerization and ligand-independent activation. Less attention has been paid to the oncogenic activity of HER3, although there is growing evidence that it mediates resistance to EGFR and HER2 pathway directed therapies. The main caveat for the development of effective HER3 targeted therapies is the absence of a strong enzymatic activity to target, as well as the limited potential for single-agent activity. In this review, we highlight the role of HER3 in cancer and, more specifically, in lung cancer. The basis for HER3 involvement in HER2 resistance and EGFR inhibition is discussed, as well as current pharmacologic strategies to combat HER3 inhibition.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27. doi:10.1158/1055-9965.EPI-15-0578.

    Article  Google Scholar 

  2. Rosell R, Karachaliou N. Large-scale screening for somatic mutations in lung cancer. Lancet. 2016;387(10026):1354–6. doi:10.1016/S0140-6736(15)01125-3.

    Article  PubMed  Google Scholar 

  3. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46. doi:10.1016/S1470-2045(11)70393-X.

    Article  CAS  PubMed  Google Scholar 

  4. Mazieres J, Barlesi F, Filleron T, Besse B, Monnet I, Beau-Faller M, et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann Oncol. 2016;27(2):281–6. doi:10.1093/annonc/mdv573.

    Article  CAS  PubMed  Google Scholar 

  5. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. doi:10.1038/35052073.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125(6):1137–49. doi:10.1016/j.cell.2006.05.013.

    Article  CAS  PubMed  Google Scholar 

  7. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA. 1989;86(23):9193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34. doi:10.1016/j.cell.2010.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yarden Y. The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37(Suppl 4):S3–8.

    Article  CAS  PubMed  Google Scholar 

  10. Harari D, Tzahar E, Romano J, Shelly M, Pierce JH, Andrews GC, et al. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene. 1999;18(17):2681–9. doi:10.1038/sj.onc.1202631.

    Article  CAS  PubMed  Google Scholar 

  11. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309(5967):418–25.

    Article  CAS  PubMed  Google Scholar 

  12. Plowman GD, Whitney GS, Neubauer MG, Green JM, McDonald VL, Todaro GJ, et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci USA. 1990;87(13):4905–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54. doi:10.1038/nrc1609.

    Article  CAS  PubMed  Google Scholar 

  14. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA. 2010;107(17):7692–7. doi:10.1073/pnas.1002753107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sierke SL, Cheng K, Kim HH, Koland JG. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem J. 1997;322(Pt 3):757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee-Hoeflich ST, Crocker L, Yao E, Pham T, Munroe X, Hoeflich KP, et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 2008;68(14):5878–87. doi:10.1158/0008-5472.CAN-08-0380.

    Article  CAS  PubMed  Google Scholar 

  17. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43. doi:10.1126/science.1141478.

    Article  CAS  PubMed  Google Scholar 

  18. Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68(7):2340–8. doi:10.1158/0008-5472.CAN-07-5229.

    Article  CAS  PubMed  Google Scholar 

  19. Cho DH, Lee HJ, Kim HJ, Hong SH, Pyo JO, Cho C, et al. Suppression of hypoxic cell death by APIP-induced sustained activation of AKT and ERK1/2. Oncogene. 2007;26(19):2809–14. doi:10.1038/sj.onc.1210080.

    Article  CAS  PubMed  Google Scholar 

  20. Kamalati T, Jolin HE, Fry MJ, Crompton MR. Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene. 2000;19(48):5471–6. doi:10.1038/sj.onc.1203931.

    Article  CAS  PubMed  Google Scholar 

  21. Li BS, Ma W, Jaffe H, Zheng Y, Takahashi S, Zhang L, et al. Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem. 2003;278(37):35702–9. doi:10.1074/jbc.M302004200.

    Article  CAS  PubMed  Google Scholar 

  22. Lessor TJ, Yoo JY, Xia X, Woodford N, Hamburger AW. Ectopic expression of the ErbB-3 binding protein ebp1 inhibits growth and induces differentiation of human breast cancer cell lines. J Cell Physiol. 2000;183(3):321–9. doi:10.1002/(SICI)1097-4652(200006)183:3<321:AID-JCP4>3.0.CO;2-O.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Fondell JD, Wang Q, Xia X, Cheng A, Lu ML, et al. Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1. Oncogene. 2002;21(36):5609–18. doi:10.1038/sj.onc.1205638.

    Article  CAS  PubMed  Google Scholar 

  24. Prigent SA, Gullick WJ. Identification of c-erbB-3 binding sites for phosphatidylinositol 3’-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J. 1994;13(12):2831–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40. doi:10.1016/j.ccr.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  26. Hong SH, Lee WJ, Kim YD, Kim H, Jeon YJ, Lim B, et al. APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis. Oncotarget. 2016;7(16):21601–17. doi:10.18632/oncotarget.7802.

    PubMed  PubMed Central  Google Scholar 

  27. Hong SH, Lee WJ, Kim YD, Kim H, Jeon YJ, Lim B, et al. APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis. Oncotarget. 2016. doi:10.18632/oncotarget.7802.

    Google Scholar 

  28. Ebbing EA, Medema JP, Damhofer H, Meijer SL, Krishnadath KK, van Berge Henegouwen MI, et al. ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget. 2016;7(9):10243–54. doi:10.18632/oncotarget.7200.

    PubMed  PubMed Central  Google Scholar 

  29. Vaught DB, Stanford JC, Young C, Hicks DJ, Wheeler F, Rinehart C, et al. HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res. 2012;72(10):2672–82. doi:10.1158/0008-5472.CAN-11-3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gwin WR, Spector NL. Pertuzumab protects the Achilles’ heel of trastuzumab–emtansine. Clin Cancer Res. 2014;20(2):278–80. doi:10.1158/1078-0432.CCR-13-2626.

    Article  CAS  PubMed  Google Scholar 

  31. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445(7126):437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amin DN, Sergina N, Lim L, Goga A, Moasser MM. HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Biochem J. 2012;447(3):417–25. doi:10.1042/BJ20120724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amin DN, Sergina N, Ahuja D, McMahon M, Blair JA, Wang D et al. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med. 2010;2(16):16ra7. doi:10.1126/scitranslmed.3000389.

  34. Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sanchez V, Chakrabarty A, et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA. 2011;108(12):5021–6. doi:10.1073/pnas.1016140108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller TW, Perez-Torres M, Narasanna A, Guix M, Stal O, Perez-Tenorio G, et al. Loss of phosphatase and tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res. 2009;69(10):4192–201. doi:10.1158/0008-5472.CAN-09-0042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mujoo K, Choi BK, Huang Z, Zhang N, An Z. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget. 2014;5(21):10222–36. doi:10.18632/oncotarget.2655.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang Z, Choi BK, Mujoo K, Fan X, Fa M, Mukherjee S, et al. The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene. 2015;34(9):1105–15. doi:10.1038/onc.2014.56.

    Article  CAS  PubMed  Google Scholar 

  38. Cancer Genome Atlas. N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:10.1038/nature11252.

    Article  Google Scholar 

  39. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi:10.1038/nature11412.

    Article  Google Scholar 

  40. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell. 2013;23(5):603–17. doi:10.1016/j.ccr.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

  41. Sithanandam G, Anderson LM. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther. 2008;15(7):413–48. doi:10.1038/cgt.2008.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poller DN, Spendlove I, Baker C, Church R, Ellis IO, Plowman GD, et al. Production and characterization of a polyclonal antibody to the c-erbB-3 protein: examination of c-erbB-3 protein expression in adenocarcinomas. J Pathol. 1992;168(3):275–80. doi:10.1002/path.1711680306.

    Article  CAS  PubMed  Google Scholar 

  43. Muller-Tidow C, Diederichs S, Bulk E, Pohle T, Steffen B, Schwable J, et al. Identification of metastasis-associated receptor tyrosine kinases in non-small cell lung cancer. Cancer Res. 2005;65(5):1778–82. doi:10.1158/0008-5472.CAN-04-3388.

    Article  PubMed  Google Scholar 

  44. Yi ES, Harclerode D, Gondo M, Stephenson M, Brown RW, Younes M, et al. High c-erbB-3 protein expression is associated with shorter survival in advanced non-small cell lung carcinomas. Mod Pathol. 1997;10(2):142–8.

    CAS  PubMed  Google Scholar 

  45. Sun M, Behrens C, Feng L, Ozburn N, Tang X, Yin G, et al. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res. 2009;15(15):4829–37. doi:10.1158/1078-0432.CCR-08-2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alifano M, Souaze F, Dupouy S, Camilleri-Broet S, Younes M, Ahmed-Zaid SM, et al. Neurotensin receptor 1 determines the outcome of non-small cell lung cancer. Clin Cancer Res. 2010;16(17):4401–10. doi:10.1158/1078-0432.CCR-10-0659.

    Article  CAS  PubMed  Google Scholar 

  47. Younes M, Wu Z, Dupouy S, Lupo AM, Mourra N, Takahashi T, et al. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib. Oncotarget. 2014;5(18):8252–69. doi:10.18632/oncotarget.1633.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fujimoto N, Wislez M, Zhang J, Iwanaga K, Dackor J, Hanna AE, et al. High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor. Cancer Res. 2005;65(24):11478–85. doi:10.1158/0008-5472.CAN-05-1977.

    Article  CAS  PubMed  Google Scholar 

  49. Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C, et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA. 2005;102(10):3788–93. doi:10.1073/pnas.0409773102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. doi:10.1126/scitranslmed.3002003.

  51. Fernandez-Cuesta L, Plenker D, Osada H, Sun R, Menon R, Leenders F, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4(4):415–22. doi:10.1158/2159-8290.CD-13-0633.

    Article  CAS  PubMed  Google Scholar 

  52. Umelo I, Noeparast A, Chen G, Renard M, Geers C, Vansteenkiste J, et al. Identification of a novel HER3 activating mutation homologous to EGFR-L858R in lung cancer. Oncotarget. 2016;7(3):3068–83. doi:10.18632/oncotarget.6585.

    PubMed  Google Scholar 

  53. Le Clorennec C, Lazrek Y, Dubreuil O, Larbouret C, Poul MA, Mondon P, et al. The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation. Oncotarget. 2016. doi:10.18632/oncotarget.9455.

    PubMed  PubMed Central  Google Scholar 

  54. Wang Q, Zhang X, Shen E, Gao J, Cao F, Wang X, et al. The anti-HER3 antibody in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive gastric cancer. Cancer Lett. 2016;380(1):20–30. doi:10.1016/j.canlet.2016.06.005.

    Article  CAS  PubMed  Google Scholar 

  55. Gala K, Chandarlapaty S. Molecular pathways: HER3 targeted therapy. Clin Cancer Res. 2014;20(6):1410–6. doi:10.1158/1078-0432.CCR-13-1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaborit N, Abdul-Hai A, Mancini M, Lindzen M, Lavi S, Leitner O, et al. Examination of HER3 targeting in cancer using monoclonal antibodies. Proc Natl Acad Sci USA. 2015;112(3):839–44. doi:10.1073/pnas.1423645112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aurisicchio L, Marra E, Roscilli G, Mancini R, Ciliberto G. The promise of anti-ErbB3 monoclonals as new cancer therapeutics. Oncotarget. 2012;3(8):744–58. doi:10.18632/oncotarget.550.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hickinson DM, Klinowska T, Speake G, Vincent J, Trigwell C, Anderton J, et al. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin Cancer Res. 2010;16(4):1159–69. doi:10.1158/1078-0432.CCR-09-2353.

    Article  CAS  PubMed  Google Scholar 

  59. Barlaam B, Anderton J, Ballard P, Bradbury RH, Hennequin LF, Hickinson DM, et al. Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors. ACS Med Chem Lett. 2013;4(8):742–6. doi:10.1021/ml400146c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garrett JT, Sutton CR, Kuba MG, Cook RS, Arteaga CL. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function. Clin Cancer Res. 2013;19(3):610–9. doi:10.1158/1078-0432.CCR-12-2024.

    Article  CAS  PubMed  Google Scholar 

  61. Yonesaka K, Hirotani K, Kawakami H, Takeda M, Kaneda H, Sakai K, et al. Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib. Oncogene. 2016;35(7):878–86. doi:10.1038/onc.2015.142.

    Article  CAS  PubMed  Google Scholar 

  62. LoRusso P, Janne PA, Oliveira M, Rizvi N, Malburg L, Keedy V, et al. Phase I study of U3-1287, a fully human anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 2013;19(11):3078–87. doi:10.1158/1078-0432.CCR-12-3051.

    Article  CAS  PubMed  Google Scholar 

  63. Nishio M, Horiike A, Murakami H, Yamamoto N, Kaneda H, Nakagawa K, et al. Phase I study of the HER3-targeted antibody patritumab (U3-1287) combined with erlotinib in Japanese patients with non-small cell lung cancer. Lung Cancer. 2015;88(3):275–81. doi:10.1016/j.lungcan.2015.03.010.

    Article  PubMed  Google Scholar 

  64. Von Pawel JJT, Dediu M, Schumann C, Moritz B, Mendell-Harary J, Jin X, Feng W, Copigneaux C, Beckman RA. Phase 2 HERALD study of patritumab (P) with erlotinib (E) in advanced NSCLC subjects (SBJs). J Clin Oncol. 2014 32:5s (suppl; abstr 8045).

  65. Mendell J, Freeman DJ, Feng W, Hettmann T, Schneider M, Blum S et al. Clinical translation and validation of a predictive biomarker for patritumab, an anti-human epidermal growth factor receptor 3 (HER3) monoclonal antibody, in patients with advanced non-small cell lung cancer. EBioMedicine. 2015;2(3):264–71. doi:10.1016/j.ebiom.2015.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Karachaliou N, Rosell R. Evaluation of biomarkers for HER3-targeted therapies in cancer. EBioMedicine. 2015;2(3):192–3. doi:10.1016/j.ebiom.2015.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  67. http://www.daiichisankyo.com/media_investors/media_relations/press_releases/detail/006455.html. Accessed 31 May 2016.

  68. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal. 2009;2(77):ra31. doi:10.1126/scisignal.2000352.

  69. Schoeberl B, Faber AC, Li D, Liang MC, Crosby K, Onsum M, et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 2010;70(6):2485–94. doi:10.1158/0008-5472.CAN-09-3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Curley MD, Sabnis GJ, Wille L, Adiwijaya BS, Garcia G, Moyo V, et al. Seribantumab, an anti-ERBB3 antibody, delays the onset of resistance and restores sensitivity to letrozole in an estrogen receptor-positive breast cancer model. Mol Cancer Ther. 2015;14(11):2642–52. doi:10.1158/1535-7163.MCT-15-0169.

    Article  CAS  PubMed  Google Scholar 

  71. Sequist LV, Demars N, Felip E, Harb WA, Huber RM, Kudla AJ, Kyung Lee J, Mathews S, McClure T, Nieva JJ, Perol M, Shepherd FA, Spira AI, Czibere AG. A phase 2 study of seribantumab (MM-121) in combination with docetaxel or pemetrexed versus docetaxel or pemetrexed alone in patients with heregulin positive (HRG+), locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 2016;34(suppl; abstr TPS9110).

  72. Mirschberger C, Schiller CB, Schraml M, Dimoudis N, Friess T, Gerdes CA, et al. RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res. 2013;73(16):5183–94. doi:10.1158/0008-5472.CAN-13-0099.

    Article  CAS  PubMed  Google Scholar 

  73. Meulendijks D, Jacob W, Martinez-Garcia M, Taus A, Lolkema MP, Voest EE, et al. First-in-human phase I study of lumretuzumab, a glycoengineered humanized anti-HER3 monoclonal antibody, in patients with metastatic or advanced HER3-positive solid tumors. Clin Cancer Res. 2016;22(4):877–85. doi:10.1158/1078-0432.CCR-15-1683.

    Article  CAS  PubMed  Google Scholar 

  74. Meetze K, Vincent S, Tyler S, Mazsa EK, Delpero AR, Bottega S, et al. Neuregulin 1 expression is a predictive biomarker for response to AV-203, an ERBB3 inhibitory antibody, in human tumor models. Clin Cancer Res. 2015;21(5):1106–14. doi:10.1158/1078-0432.CCR-14-2407.

    Article  CAS  PubMed  Google Scholar 

  75. Sarantopoulos JMSG, Harvey RD, Sankhala KK, Malik L, Mahalingam D, Owonikoko TK, Lewis CM, Payumo F, Miller J, Powell C, Weng Z, Komarnitsky PB, Ramalingam SS. First-in-human phase 1 dose-escalation study of AV-203, a monoclonal antibody against ERBB3, in patients with metastatic or advanced solid tumors. J Clin Oncol. 2014;32:5s(suppl; abstr 11113).

  76. Xiao Z, Carrasco RA, Schifferli K, Kinneer K, Tammali R, Chen H, et al. A potent HER3 monoclonal antibody that blocks both ligand-dependent and -independent activities: differential impacts of PTEN status on tumor response. Mol Cancer Ther. 2016;15(4):689–701. doi:10.1158/1535-7163.MCT-15-0555.

    Article  CAS  PubMed  Google Scholar 

  77. Falchook GS, Bauer TM, LoRusso P, McLaughlin JF, LaVallee T, Peck RA et al. Safety, pharmacokinetics (PK), pharmacodynamics (Pd), and antitumor activity in a phase 1b study evaluating anti-ErbB3 antibody KTN3379 in adults with advanced tumors alone and with targeted therapies. J Clin Oncol. 2016;34(suppl; abstr 2501).

  78. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, et al. An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res. 2013;73(19):6024–35. doi:10.1158/0008-5472.CAN-13-1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garrett JT, Sutton CR, Kurupi R, Bialucha CU, Ettenberg SA, Collins SD, et al. Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110alpha inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res. 2013;73(19):6013–23. doi:10.1158/0008-5472.CAN-13-1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reynolds KL, Juric D, Baselga J, Alsina M, Tabernero J, Bedard PL, Graham DM, Gonzalez-Angulo AM, Garrido-Laguna I, Sharma S, Lin C-C, Cohen EEW, Lee S-H, Zucchetto M, Tian X, Delgado L, Li J, Morozov A, Bang Y-J. A phase 1 study of LJM716 in patients with esophageal squamous cell carcinoma, head and neck cancer, or HER2-overexpressing metastatic breast or gastric cancer. J Clin Oncol 2014;32:5 s,(suppl; abstr 2517).

  81. Sala G, Traini S, D’Egidio M, Vianale G, Rossi C, Piccolo E, et al. An ErbB-3 antibody, MP-RM-1, inhibits tumor growth by blocking ligand-dependent and independent activation of ErbB-3/Akt signaling. Oncogene. 2012;31(10):1275–86. doi:10.1038/onc.2011.322.

    Article  CAS  PubMed  Google Scholar 

  82. Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell. 2011;20(4):472–86. doi:10.1016/j.ccr.2011.09.003.

    Article  CAS  PubMed  Google Scholar 

  83. Juric D, Dienstmann R, Cervantes A, Hidalgo M, Messersmith W, Blumenschein GR Jr, et al. Safety and pharmacokinetics/pharmacodynamics of the first-in-class dual action HER3/EGFR antibody MEHD7945A in locally advanced or metastatic epithelial tumors. Clin Cancer Res. 2015;21(11):2462–70. doi:10.1158/1078-0432.CCR-14-2412.

    Article  CAS  PubMed  Google Scholar 

  84. McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther. 2012;11(3):582–93. doi:10.1158/1535-7163.MCT-11-0820.

    Article  CAS  PubMed  Google Scholar 

  85. Denlinger CS, Sym S-J, Bendell JC, Alsina M, Watkins D, Chao Y, Cubillo A, Kunz PL, Sun W, Baeksgaard L, Chen L-T, Horgan K, Frye S, Kudla AJ, McDonagh CF, Czibere AG, Moyo VM, Chibaudel B, Bang Y-J. Randomized open-label phase 2 study of MM-111 and paclitaxel (PTX) with trastuzumab (TRAS) in patients with HER2-expressing carcinomas of the distal esophagus, gastroesophageal (GE) junction, and stomach who have failed front-line metastatic or locally advanced therapy. J Clin Oncol. 2014;32:5s(suppl; abstr TPS4148).

  86. Fitzgerald JB, Johnson BW, Baum J, Adams S, Iadevaia S, Tang J, et al. MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther. 2014;13(2):410–25. doi:10.1158/1535-7163.MCT-13-0255.

    Article  CAS  PubMed  Google Scholar 

  87. Ko AH, Murray J, Horgan KE, Dauer J, Curley M, Baum J et al. A multicenter phase II study of istiratumab (MM-141) plus nab-paclitaxel (A) and gemcitabine (G) in metastatic pancreatic cancer (MPC). J Clin Oncol. 2016;34(suppl 4S; abstr TPS481).

  88. Calvo E, Alsina M, Schellens JHM, Huitema AD, Tabernero J, de Vries-Schultink A et al. Abstract CT050: A phase I/II study of MCLA-128, a full length IgG1 bispecific antibody targeting HER2 and HER3, in patients with solid tumors. Cancer Res. 2016;76(14 Supplement):CT050-CT. doi:10.1158/1538-7445.am2016-ct050.

  89. Shames DS, Carbon J, Walter K, Jubb AM, Kozlowski C, Januario T, et al. High heregulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck. PLoS One. 2013;8(2):e56765. doi:10.1371/journal.pone.0056765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA. 2003;100(15):8933–8. doi:10.1073/pnas.1537685100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bauer TM, Infante JR, Eder JP, LoRusso P, LaVallee T, Gedrich R, Sidor C, Falchook GS. A phase 1, open-label study to evaluate the safety and pharmacokinetics of the anti ErbB3 antibody, KTN3379, alone or in combination with targeted therapies in patients with advanced tumors. J Clin Oncol. 2015;33(suppl; abstr 2598).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niki Karachaliou.

Ethics declarations

Conflict of interest

NK, CL, AV, AS and RR declare no conflicts of interest.

Funding

This work was funded by La Caixa Foundation and Red Tematica de Investigacion Cooperativa en Cancer (RTICC; Grant RD12/0036/0072).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karachaliou, N., Lazzari, C., Verlicchi, A. et al. HER3 as a Therapeutic Target in Cancer. BioDrugs 31, 63–73 (2017). https://doi.org/10.1007/s40259-016-0205-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-016-0205-2

Keywords

  • Epidermal Growth Factor Receptor
  • Trastuzumab
  • Human Epidermal Growth Factor Receptor
  • Gefitinib
  • Erlotinib