, Volume 30, Issue 6, pp 593–605 | Cite as

Identification of Potential Therapeutics to Conquer Drug Resistance in Salmonella typhimurium: Drug Repurposing Strategy

  • Balasundaram Preethi
  • Veerappapillai Shanthi
  • Karuppasamy RamanathanEmail author
Original Research Article



Salmonella typhimurium is the main cause of gastrointestinal illness in humans, and treatment options are decreasing because drug-resistant strains have emerged.


The objective of this study was to use computational drug repurposing to identify a novel candidate with an effective mechanism of action to circumvent the drug resistance.


We used the Mantra 2.0 database to initially screen drug candidates that share similar gene expression profiles to those of quinolones. Data were further reduced using pharmacophore mapping theory. Finally, we employed molecular-simulation studies to calculate the binding affinity of the screened candidates with DNA gyrase, alongside an analysis of side effects.


A total of 16 drug candidates from the Mantra 2.0 database were screened. The pharmacophoric features of the screened candidates were examined and nalidixic acid features compared using the PharamGist program. A total of 11 compounds with the highest pharmacophore score were considered for binding energy calculation. Finally, we analysed the side effects of the eight drug candidates that showed significant binding affinity in the simulation study.


Overall, flufenamic acid and sulconazole may be potential drug candidates that could be studied in vitro to assess their resistance profile against Salmonella enterica Typhimurium.


Protein Data Bank Nalidixic Acid Molecular Docking Study Tiapride Flufenamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the management of VIT University for providing the facility, support, and constant encouragement to carry out this work.

Compliance with Ethical Standards


No sources of funding were used to assist in the preparation of this study.

Conflicts of interest

B. Preethi, V. Shanthi and K. Ramanathan have no conflicts of interest.


  1. 1.
    Fabrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26:308–41.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50:882–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Asperilla MO, Smego RA Jr, Scott LK. Quinolone antibiotics in the treatment of Salmonella infections. Rev Infect Dis. 1990;12:873–89.CrossRefPubMedGoogle Scholar
  4. 4.
    Hawkey PM. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother. 2003;1:29–35.CrossRefGoogle Scholar
  5. 5.
    Willmott CJ, Critchlow SE, Eperon IC, Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol. 1994;242:351–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Oteo J, Aracil B, Alós JI, Gómez-Garcés JL. High rate of resistance to nalidixic acid in Salmonella enterica: its role as a marker of resistance to fluoroquinolones. Clin Microbiol Infect. 2000;6:273–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Murphy TM, McNamara E, Hill M, Rooney N, Barry J, Egan J, O’Connell A, O’Loughlin J, McFaddyen S. Epidemiological studies of human and animal Salmonella typhimurium DT104 and DT104b isolates in Ireland. Epidemiol Infect. 2001;126:3–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Piddock LJ, Ricci V, McLaren I, Griggs DJ. Role of mutation in the gyrA and parC genes of nalidixic-acid-resistant salmonella serotypes isolated from animals in the United Kingdom. J Antimicrob Chemother. 1998;41:635–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Ngoi ST, Thong KL. High resolution melting analysis for rapid mutation screening in gyrase and Topoisomerase IV genes in quinolone-resistant Salmonella enterica. Biomed Res Int. 2014;2014:718084.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14.PubMedGoogle Scholar
  12. 12.
    Law GL, Tisoncik-Go J, Korth MJ, Katze MG. Drug repurposing: a better approach for infectious disease drug discovery? Curr Opin Immunol. 2013;25:588–92.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Boguski MS, Mandl KD, Sukhatme VP. Drug discovery. Repurposing with a difference. Science. 2009;324:1394–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, DEFINE Study Investigators. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367:1098–107.CrossRefPubMedGoogle Scholar
  16. 16.
    Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2015;131:289–99.CrossRefPubMedGoogle Scholar
  17. 17.
    Veljkovic V, Loiseau PM, Figadere B, Glisic S, Veljkovic N, Perovic VR, Cavanaugh DP, Branch DR. Virtual screen for repurposing approved and experimental drugs for candidate inhibitors of EBOLA virus infection. F1000Res. 2015;4:34.Google Scholar
  18. 18.
    Jin G, Wong ST. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 2014;19:637–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Vos SM, Lyubimov AY, Hershey DM, Schoeffler AJ, Sengupta S, Nagaraja V, Berger JM. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein. Genes Dev. 2014;28:1485–97.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Laponogov I, Pan XS, Veselkov DA, McAuley KE, Fisher LM, Sanderson MR. Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One. 2010;5:e11338.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 2016;54:5.6.1–5.6.37.Google Scholar
  23. 23.
    McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:W20–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB. Antimicrob Agents Chemother. 2002;46:1805–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A, Bryant SH. MMDB and VAST+ : tracking structural similarities between macromolecular complexes. Nucleic Acids Res. 2014;42:D297–303.CrossRefPubMedGoogle Scholar
  26. 26.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brown JC, Thomson CJ, Amyes SG. Mutations of the gyrA gene of clinical isolates of Salmonella typhimurium and three other Salmonella species leading to decreased susceptibilities to 4-quinolone drugs. J Antimicrob Chemother. 1996;37:351–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Kumar M, Dahiya S, Sharma P, Sharma S, Singh TP, Kapil A, Kaur P. Structure based in silico analysis of quinolone resistance in clinical isolates of Salmonella Typhi from India. PLoS One. 2015;10:e0126560.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carrella D, Napolitano F, Rispoli R, Miglietta M, Carissimo A, Cutillo L, Sirci F, Gregoretti F, Di Bernardo D. Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics. 2014;30:1787–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhanel GG, Walkty A, Vercaigne L, Karlowsky JA, Embil J, Gin AS, Hoban DJ. The new fluoroquinolones: a critical review. Can J Infect Dis. 1999;10:207–38.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC recommendations 1997). Annu Rep Med Chem. 1997;33:385–95.CrossRefGoogle Scholar
  34. 34.
    Dror O, Shulman-Peleg A, Nussinov R, Wolfson HJ. Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem. 2004;11:71–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 2008;36:W223–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gaudreault F, Chartier M, Najmanovich R. Side-chain rotamer changes upon ligand binding: common, crucial, correlate with entropy and rearrange hydrogen bonding. Bioinformatics. 2012;28:i423–30.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen YC. Beware of docking! Trends Pharmacol Sci. 2015;36:78–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Bassily S, Hyams KC, el-Masry NA, Farid Z, Cross E, Bourgeois AL, Ayad E, Hibbs RG. Short-course norfloxacin and trimethoprim-sulfamethoxazole treatment of shigellosis and salmonellosis in Egypt. Am J Trop Med Hyg. 1994;51:219–223.Google Scholar
  40. 40.
    le Phung V, Ryo H, Nomura T. Specific gyrA mutation at codon 83 in nalidixic acid-resistant Salmonella enterica serovar Typhi strains isolated from Vietnamese patients. Antimicrob Agents Chemother. 2002;46:2052–3.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, Piddock LJ. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother. 2004;48:4012–5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM, Drlica K. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem. 2014;289:12300–12.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dahiya S, Kapil A, Lodha R, Kumar R, Das BK, Sood S, Kabra SK. Induction of resistant mutants of Salmonella enterica serotype Typhi under ciprofloxacin selective pressure. Indian J Med Res. 2014;139:746–53.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44:D1075–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Buvat J. Hyperprolactinemia and sexual function in men: a short review. Int J Impot Res. 2003;15:373–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Kandeel M. Efficacy of amprolium and toltrazuril in chicken with subclinical infection of cecal coccidiosis. Indian J Pharmacol. 2011;43:741–3.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Djezzar S, Vorspan F, Chataigner D, Burin E, Garnier R, Lépine JP. Mephenesin dependence: a case series. J Clin Psychopharmacol. 2012;32:736–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Roudier C, Caumes E, Rogeaux O, Bricaire F, Gentilini M. Adverse cutaneous reactions to trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency syndrome and Pneumocystis carinii pneumonia. Arch Dermatol. 1994;130:1383–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Benfield P, Clissold SP. Sulconazole: a review of its antimicrobial activity and therapeutic use in superficial dermatomycoses. Drugs. 1988;35:143–53.CrossRefPubMedGoogle Scholar
  50. 50.
    Rajan KT, Hill AG, Barr A, Whitwell E. Flufenamic acid in rheumatoid arthritis. Ann Rheum Dis. 1967;26:43–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Balasundaram Preethi
    • 1
  • Veerappapillai Shanthi
    • 1
  • Karuppasamy Ramanathan
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations