Skip to main content
Log in

Update on Metastatic Uveal Melanoma: Progress and Challenges

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Uveal melanoma is a rare and biologically distinct type of melanoma arising from melanocytes of the uveal tract; it is associated with a poor prognosis due to the lack of effective systemic treatments. Recent advances in the pathogenesis of uveal melanoma offer an unprecedented opportunity for investigation of new compounds. The purpose of this paper was to analyse the existing evidence about the molecular pathology and immunobiology of advanced uveal melanoma and their implications for systemic targeted therapies and immunotherapy, as well as to discuss future treatment strategies based on data provided by clinical and translational research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spagnolo F, Caltabiano G, Queirolo P. Uveal melanoma. Cancer Treat Rev. 2012;38:549–53.

    Article  PubMed  Google Scholar 

  2. Harbour JW. The genetics of uveal melanoma: an emerging framework for targeted therapy. Pigment Cell Melanoma Res. 2012;25:171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buder K, Gesierich A, Gelbrich G, Goebeler M. Systemic treatment of metastatic uveal melanoma: review of literature and future perspectives. Cancer Med. 2013;2:674–86.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harbour JW. Genomic, prognostic, and cell-signaling advances in uveal melanoma. Am Soc Clin Oncol Educ Book. 2013:388–91. doi:10.1200/EdBook_AM.2013.33.388.

  5. The Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings: COMS report no. 18. Arch Ophthalmol. 2001;119:969–82.

    Article  Google Scholar 

  6. The Collaborative Ocular Melanoma Study Group. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group report no. 26. Arch Ophthalmol. 2005;123:1639–43.

    Article  Google Scholar 

  7. Valpione S, Moser JC, Parrozzani R, Bazzi M, Mansfield AS, Mocellin S, et al. Development and external validation of a prognostic nomogram for metastatic uveal melanoma. PLoS One. 2015;10:e0120181.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Desjardins L, Dorval T, Levy C, Cojean I, Schlienger P, Salmon RJ, et al. Randomized study of adjuvant therapy by DTIC in choroidal melanoma. Ophtalmologie. 1998;12:168–73.

    Google Scholar 

  9. Voelter V, Schalenbourg A, Pampallona S, Peters S, Halkic N, Denys A, et al. Adjuvant intra-arterial hepatic fotemustine for high-risk uveal melanoma patients. Melanoma Res. 2008;18:220–4.

    Article  CAS  PubMed  Google Scholar 

  10. Lane AM, Egan KM, Harmon D, Holbrook A, Munzenrider JE, Gragoudas ES. Adjuvant interferon therapy for patients with uveal melanoma at high risk of metastasis. Ophthalmology. 2009;116:2206–12.

    Article  PubMed  Google Scholar 

  11. Eschelman DJ, Gonsalves CF, Sato T. Transhepatic therapies for metastatic uveal melanoma. Semin Interv Radiol. 2013;30:39–48.

    Article  Google Scholar 

  12. Augsburger JJ, Gamel JW. Clinical prognostic factors in patients with posterior uveal malignant melanoma. Cancer. 1990;66:1596–600.

    Article  CAS  PubMed  Google Scholar 

  13. Mäkitie T, Summanen P, Tarkkanen A, Kivelä T. Tumor-infiltrating macrophages (CD68 + cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42:1414–21.

    PubMed  Google Scholar 

  14. Bornfeld N, Prescher G, Becher R, Hirche H, Jöckel K-H, Horsthemke B. Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996;347:1222–5.

    Article  PubMed  Google Scholar 

  15. Damato B, Dopierala J, Klaasen A, van Dijk M, Sibbring J, Coupland SE. Multiplex ligation-dependent probe amplification of uveal melanoma: correlation with metastatic death. Invest Ophthalmol Vis Sci. 2009;50:3048–55.

    Article  PubMed  Google Scholar 

  16. Worley LA, Onken MD, Person E, Robirds D, Branson J, Char DH, et al. Transcriptomic versus chromosomal prognostic markers and clinical outcome in uveal melanoma. Clin Cancer Res. 2007;13:1466–71.

    Article  CAS  PubMed  Google Scholar 

  17. van Gils W, Lodder EM, Mensink HW, Kiliç E, Naus NC, Brüggenwirth HT, et al. Gene expression profiling in uveal melanoma: two regions on 3p related to prognosis. Invest Ophthalmol Vis Sci. 2008;49:4254–62.

    Article  PubMed  Google Scholar 

  18. Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004;64:7205–9.

    Article  CAS  PubMed  Google Scholar 

  19. Harbour JW. A prognostic test to predict the risk of metastasis in uveal melanoma based on a 15-gene expression profile. Methods Mol Biol. 2014;1102:427–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mariani P, Servois V, Piperno-Neumann S. Therapeutic options in metastatic uveal melanoma. Dev Ophthalmol. 2012;49:166–81.

    Article  PubMed  Google Scholar 

  21. Spagnolo F, Grosso M, Picasso V, Tornari E, Pesce M, Queirolo P. Treatment of metastatic uveal melanoma with intravenous fotemustine. Melanoma Res. 2013;23:196–8.

    Article  CAS  PubMed  Google Scholar 

  22. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  23. Korn EL, Liu P-Y, Lee SJ, Chapman J-AW, Niedzwiecki D, Suman VJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol. 2008;26:527–34.

    Article  PubMed  Google Scholar 

  24. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed  Google Scholar 

  26. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  27. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371:1877–88.

    Article  PubMed  Google Scholar 

  28. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  Google Scholar 

  29. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  Google Scholar 

  30. Cruz F, Rubin BP, Wilson D, Town A, Schroeder A, Haley A, et al. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003;63:5761–6.

    CAS  PubMed  Google Scholar 

  31. Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, Borgstein A-M, et al. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer. 2005;92:2032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luke JJ, Triozzi PL, McKenna KC, Van Meir EG, Gershenwald JE, Bastian BC, et al. Biology of advanced uveal melanoma and next steps for clinical therapeutics. Pigment Cell Melanoma Res. 2015;28:135–47.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, et al. The emerging mutational landscape of G-proteins and G-protein coupled receptors in cancer. Nat Rev Cancer. 2013;13:412–24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hubbard KB, Hepler JR. Cell signalling diversity of the Gqα family of heterotrimeric G proteins. Cell Signal. 2006;18:135–50.

    Article  CAS  PubMed  Google Scholar 

  36. Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007;7:281–94.

    Article  CAS  PubMed  Google Scholar 

  37. Mitsiades N, Chew SA, He B, Riechardt AI, Karadedou T, Kotoula V, et al. Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Invest Ophthalmol Vis Sci. 2011;52:7248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel M, Smyth E, Chapman PB, Wolchok JD, Schwartz GK, Abramson DH, et al. Therapeutic implications of the emerging molecular biology of uveal melanoma. Clin Cancer Res. 2011;17:2087–100.

    Article  CAS  PubMed  Google Scholar 

  39. Field MG, Harbour JW. GNAQ/11 mutations in uveal melanoma: is YAP the key to targeted therapy? Cancer Cell. 2014;25:714–5.

    Article  CAS  PubMed  Google Scholar 

  40. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  41. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a Trio-regulated Rho GTPase signaling circuitry. Cancer Cell. 2014;25:831–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu F-X, Luo J, Mo J-S, Liu G, Kim YC, Meng Z, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25:822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA, et al. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26:1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nabil A-A, Marie S, Marc-Henri S, Nathalie C, Laurence D, Sophie P-N, et al. Upcoming translational challenges for uveal melanoma. Br J Cancer. 2015;113:1249–53.

    Article  PubMed Central  Google Scholar 

  45. Harbour JW, Onken MD, Roberson EDO, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48:856–9.

    Article  CAS  PubMed  Google Scholar 

  47. Read J, Wadt KAW, Hayward NK. Melanoma genetics. J Med Genet. 2016;53:1–14.

    PubMed  Google Scholar 

  48. Landreville S, Agapova OA, Matatall KA, Kneass ZT, Onken MD, Lee RS, et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res. 2012;18:408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. LaFave LM, Beguelin W, Koche R, Teater M, Spitzer B, Chramiec A, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21:1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. All-Ericsson C, Girnita L, Müller-Brunotte A, Brodin B, Seregard S, Östman A, et al. c-Kit-dependent growth of uveal melanoma cells: a potential therapeutic target? Invest Ophthalmol Vis Sci. 2004;45:2075–82.

    Article  PubMed  Google Scholar 

  51. All-Ericsson C, Girnita L, Seregard S, Bartolazzi A, Jager MJ, Larsson O. Insulin-like growth factor-1 receptor in uveal melanoma: a predictor for metastatic disease and a potential therapeutic target. Invest Ophthalmol Vis Sci. 2002;43:1–8.

    PubMed  Google Scholar 

  52. Economou MA, All-Ericsson C, Bykov V, Girnita L, Bartolazzi A, Larsson O, et al. Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications. Acta Ophthalmol. 2008;86:20–5.

    Article  PubMed  Google Scholar 

  53. Surriga O, Rajasekhar VK, Ambrosini G, Dogan Y, Huang R, Schwartz GK. Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model. Mol Cancer Ther. 2013;12:2817–26.

    Article  CAS  PubMed  Google Scholar 

  54. Wu X, Zhou J, Rogers AM, Jänne PA, Benedettini E, Loda M, et al. c-Met, epidermal growth factor receptor, and insulin-like growth factor-1 receptor are important for growth in uveal melanoma and independently contribute to migration and metastatic potential. Melanoma Res. 2012;22:123–32.

    Article  CAS  PubMed  Google Scholar 

  55. Carvajal RD, Sosman JA, Quevedo J, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014;311:2397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  56. AstraZeneca provides update on selumetinib in uveal melanoma [media release]. AstraZeneca. 22 July 2015. https://www.astrazeneca.com/media-centre/press-releases/2015/astrazeneca-selumetinib-uveal-melanoma-oncology-22072015.html. Accessed 14 March 2016.

  57. Piperno-Neumann S, Kapiteijn E, Larkin J, Carvajal RD, Luke JJ, Seifert H, et al. Phase I dose-escalation study of the protein kinase C (PKC) inhibitor AEB071 in patients with metastatic uveal melanoma. J Clin Oncol. 2014;32(Suppl):Abstr 9030.

  58. Penel N, Delcambre C, Durando X, Clisant S, Hebbar M, Negrier S, et al. O-Mel-Inib: a Cancéro-pôle Nord-Ouest multicenter phase II trial of high-dose imatinib mesylate in metastatic uveal melanoma. Invest New Drugs. 2008;26:561–5.

    Article  CAS  PubMed  Google Scholar 

  59. Hofmann UB, Kauczok-Vetter CS, Houben R, Becker JC. Overexpression of the KIT/SCF in uveal melanoma does not translate into clinical efficacy of imatinib mesylate. Clin Cancer Res. 2009;15:324–9.

    Article  CAS  PubMed  Google Scholar 

  60. Tarhini AA, Frankel P, Margolin KA, Christensen S, Ruel C, Shipe-Spotloe J, et al. Aflibercept (VEGF Trap) in inoperable stage III or stage IV melanoma of cutaneous or uveal origin. Clin Cancer Res. 2011;17:6574–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhatia S, Moon J, Margolin KA, Weber JS, Lao CD, Othus M, et al. Phase II trial of sorafenib in combination with carboplatin and paclitaxel in patients with metastatic uveal melanoma: SWOG S0512. PLoS One. 2012;7:e48787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falchook GS, Lewis KD, Infante JR, Gordon MS, Vogelzang NJ, DeMarini DJ, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahipal A, Tijani L, Chan K, Laudadio M, Mastrangelo MJ, Sato T. A pilot study of sunitinib malate in patients with metastatic uveal melanoma. Melanoma Res. 2012;22:440–6.

    Article  CAS  PubMed  Google Scholar 

  64. Nathan P. A Cancer Research UK two-stage multicenter phase II study of imatinib in the treatment of patients with c-kit positive metastatic uveal melanoma (ITEM). J Clin Oncol. 2012;30(Suppl):Abstr 8523.

  65. Daud A, Kluger HM, Edelman G, Gordon MS, Schimmoller F, Weitzman A, et al. Activity of cabozantinib in metastatic uveal melanoma: updated results from a phase II randomized discontinuation trial (RDT). J Clin Oncol. 2013;31(Suppl):Abstr 9094.

  66. Piperno-Neumann S, Servois V, Bidard F-C, Mariani P, Plancher C, Diallo A, et al. BEVATEM: phase II study of bevacizumab (B) in combination with temozolomide (T) in patients (pts) with first-line metastatic uveal melanoma (MUM): final results. J Clin Oncol. 2013;31(Suppl):Abstr 9057.

  67. Sacco JJ, Nathan PD, Danson S, Lorigan P, Nicholson S, Ottensmeier C, et al. Sunitinib versus dacarbazine as first-line treatment in patients with metastatic uveal melanoma. J Clin Oncol. 2013;31(Suppl):Abstr 9031.

  68. Mouriaux F, Servois V, Piperno-Neumann S, Lesimple T, Thyss A, Jouary T, et al. O-mel-sora: a national multicenter phase II trial of sorafenib in metastatic uveal melanoma. J Clin Oncol. 2014;32(Suppl):Abstr e20004.

  69. Niederkorn A, Wackernagel W, Artl M, Schwantzer G, Aigner B, Richtig E. Response of patients with metastatic uveal melanoma to combined treatment with fotemustine and sorafenib. Acta Ophthalmol. 2014;92:e696–7.

    Article  CAS  PubMed  Google Scholar 

  70. Dickson M, Gordon M, Edelman G, Bendell J, Kudchadkar R, LoRusso P, et al. Phase I study of XL281 (BMS-908662), a potent oral RAF kinase inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2015;33:349–56.

    Article  CAS  PubMed  Google Scholar 

  71. Shoushtari AN, Ong LT, Schoder H, Singh-Kandah S, Abbate KT, Postow MA, et al. A phase 2 trial of everolimus and pasireotide long-acting release in patients with metastatic uveal melanoma. Melanoma Res. Epub 2016 Jan 19.

  72. Spagnolo F, Ghiorzo P, Queirolo P. Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget. 2014;5:10206–21.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Spagnolo F, Ghiorzo P, Orgiano L, Pastorino L, Picasso V, Tornari E, et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. OncoTargets Ther. 2015;8:157–68.

    Article  CAS  Google Scholar 

  74. Queirolo P, Picasso V, Spagnolo F. Combined BRAF and MEK inhibition for the treatment of BRAF-mutated metastatic melanoma. Cancer Treat Rev. 2015;41:519–26.

    Article  CAS  PubMed  Google Scholar 

  75. Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene. 2014;33:4724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sagoo MS, Harbour JW, Stebbing J, Bowcock AM. Combined PKC and MEK inhibition for treating metastatic uveal melanoma. Oncogene. 2014;33:4722–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khalili JS, Yu X, Wang J, Hayes BC, Davies MA, Lizee G, et al. Combination small molecule MEK and PI3K inhibition enhances uveal melanoma cell death in a mutant GNAQ and GNA11 dependent manner. Clin Cancer Res. 2012;18:4345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Musi E, Ambrosini G, de Stanchina E, Schwartz GK. The phosphoinositide 3-kinase α selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells. Mol Cancer Ther. 2014;13:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang W, Chen PW, Li H, Alizadeh H, Niederkorn JY. PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. Invest Ophthalmol Vis Sci. 2008;49:2518–25.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chen PW, Mellon JK, Mayhew E, Wang S, He YG, Hogan N, et al. Uveal melanoma expression of indoleamine 2,3-deoxygenase: establishment of an immune privileged environment by tryptophan depletion. Exp Eye Res. 2007;85:617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  82. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Vries TJ, Trancikova D, Ruiter DJ, van Muijen GN. High expression of immunotherapy candidate proteins gp100, MART-1, tyrosinase and TRP-1 in uveal melanoma. Br J Cancer. 1998;78:1156–61.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Luyten GPM, van der Spek CW, Sintnicolaas K, de Waard-Siebinga I, Jager MJ, de Jong PTVM, et al. Expression of MAGE, gp100 and tyrosinase genes in uveal melanoma cell lines. Melanoma Res. 1998;8:11–6.

    Article  PubMed  Google Scholar 

  85. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Walker LSK, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11:852–63.

    Article  CAS  PubMed  Google Scholar 

  88. Wolchok JD, Weber JS, Maio M, Neyns B, Harmankaya K, Chin K, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials. Ann Oncol. 2013;24:2174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.

    Article  CAS  PubMed  Google Scholar 

  90. Maio M, Grob J-J, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33:1191–6.

    Article  CAS  PubMed  Google Scholar 

  91. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  Google Scholar 

  92. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  93. Danielli R, Ridolfi R, Chiarion-Sileni V, Queirolo P, Testori A, Plummer R, et al. Ipilimumab in pretreated patients with metastatic uveal melanoma: safety and clinical efficacy. Cancer Immunol Immunother. 2012;61:41–8.

    Article  CAS  PubMed  Google Scholar 

  94. Maio M, Danielli R, Chiarion-Sileni V, Pigozzo J, Parmiani G, Ridolfi R, et al. Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. Ann Oncol. 2013;24:2911–5.

    Article  CAS  PubMed  Google Scholar 

  95. Kelderman S, van der Kooij MK, van den Eertwegh AJM, Soetekouw PMMB, Jansen RLH, van den Brom RRH, et al. Ipilimumab in pretreated metastastic uveal melanoma patients. Results of the Dutch Working Group on Immunotherapy of Oncology (WIN-O). Acta Oncol. 2013;52:1786–8.

    Article  CAS  PubMed  Google Scholar 

  96. Khattak MA, Fisher R, Hughes P, Gore M, Larkin J. Ipilimumab activity in advanced uveal melanoma. Melanoma Res. 2013;23:79–81.

    Article  CAS  PubMed  Google Scholar 

  97. Luke JJ, Callahan MK, Postow MA, Romano E, Ramaiya N, Bluth M, et al. Clinical activity of ipilimumab for metastatic uveal melanoma. Cancer. 2013;119:3687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deo MA, Van Maanen A, Cornelis F, De Potter P, Baurain JF. Long-term survival benefit from ipilimumab treatment in metastatic uveal melanoma patients. J Clin Oncol. 2014;32(Suppl):Abstr 3060.

  99. Piulats Rodriguez JM, de Olza MO, Codes M, Lopez-Martin JA, Berrocal A, García M, et al. Phase II study evaluating ipilimumab as a single agent in the first-line treatment of adult patients (pts) with metastatic uveal melanoma (MUM): the GEM-1 trial. J Clin Oncol. 2014;32(Suppl):Abstr 9033.

  100. Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS One. 2015;10:e0118564.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kottschade LA, McWilliams RR, Markovic S, Block MS, Bisneto JV, Pham AQ, Dronca RS. The use of pembrolizumab for the treatment of metastatic uveal melanoma. J Clin Oncol. 2015;33(Suppl):Abstr 9010.

  102. Tsai KK, Zarzoso I, Daud AI. PD-1 and PD-L1 antibodies for melanoma. Hum Vaccines Immunother. 2014;10:3111–6.

    Article  Google Scholar 

  103. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Spagnolo.

Ethics declarations

Conflict of interest

Francesco Spagnolo, Virginia Picasso, Laura Spano, Enrica Tanda, Clary Venzano and Paola Queirolo have no financial interest in any of the products, devices or drugs mentioned in this article. Francesco Spagnolo has received lecture fees from Bristol-Myers Squibb, Novartis and Roche; Virginia Picasso has received lecture fees from Bristol-Myers Squibb; Paola Queirolo has received lecture fees and served on advisory boards for Bristol-Myers Squibb, Novartis, Roche and MSD.

Funding

No sources of funding were used in the preparation of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spagnolo, F., Picasso, V., Spano, L. et al. Update on Metastatic Uveal Melanoma: Progress and Challenges. BioDrugs 30, 161–172 (2016). https://doi.org/10.1007/s40259-016-0167-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-016-0167-4

Keywords

Navigation