Skip to main content
Log in

Practical Considerations for the Pharmacokinetic and Immunogenic Assessment of Antibody–Drug Conjugates

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Currently, the most bioanalytically challenging drugs are antibody–drug conjugates (ADCs), constructs comprising a monoclonal antibody and a cytotoxic drug connected by a linker. The bioanalytical challenges arise from the heterogeneous nature of ADCs and their complex in vivo behavior, resulting in a high number of analytes to be measured. Measuring the concentration of biologics in blood/plasma/serum is a necessity to properly assess their pharmacokinetic (PK)/pharmacodynamic behaviors in vivo. An additional bioanalytical challenge is to monitor the stability of the ADCs, as cytotoxic drugs released from the ADC in blood circulation may pose a potential safety risk because of their high cytotoxic potency. The nature of ADCs does not only complicate bioanalysis, but also immunogenicity assessment. Questions, such as ‘Which part of the ADCs is the anti-drug antibodies directed against?’ may arise, and their answer normally includes several immunogenicity risk assessment strategies. This review will focus on the bioanalytical challenges of ADCs, current approaches involving ligand-binding assays (LBAs), liquid chromatography and mass spectrometry platforms, and recommendations on which approach to use for which stage of drug development, and will close with immunogenicity assessment. In order to appropriately tackle the bioanalytical and immunogenic challenges of ADCs and consider every angle, the authors of this review have expertise in ligand binding and liquid chromatography–mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flygare JA, Pillow TH, Aristoff P. Antibody–drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  2. Iyer U, Kadambi VJ. Antibody drug conjugates—Trojan horses in the war on cancer. J Pharmacol Toxicol Methods. 2011;64(3):207–12.

    Article  CAS  PubMed  Google Scholar 

  3. Lambert JM. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol. 2013;76(2):248–62.

    Article  CAS  PubMed  Google Scholar 

  4. Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30(7):631–7.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis Phillips GD, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90.

  6. Hamblett KJ, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70.

    Article  CAS  PubMed  Google Scholar 

  7. Xu K, et al. Characterization of intact antibody–drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry. Anal Biochem. 2011;412(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  8. Sun X, et al. Design of antibody-maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem. 2011;22(4):728–35.

    Article  CAS  PubMed  Google Scholar 

  9. Gorovits B, et al. Bioanalysis of antibody–drug conjugates: American Association of Pharmaceutical Scientists Antibody–Drug Conjugate Working Group position paper. Bioanalysis. 2013;5(9):997–1006.

    Article  CAS  PubMed  Google Scholar 

  10. Hopfgartner G, Bourgogne E. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom Rev. 2003;22(3):195–214.

    Article  CAS  PubMed  Google Scholar 

  11. Xu RN, et al. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J Pharm Biomed Anal. 2007;44(2):342–55.

    Article  CAS  PubMed  Google Scholar 

  12. Stephan JP, Kozak KR, Wong WL. Challenges in developing bioanalytical assays for characterization of antibody–drug conjugates. Bioanalysis. 2011;3(6):677–700.

    Article  CAS  PubMed  Google Scholar 

  13. Sanderson RJ, et al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res. 2005;11(2 Pt 1):843–52.

    CAS  PubMed  Google Scholar 

  14. Stephan JP, et al. Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug Chem. 2008;19(8):1673–83.

    Article  CAS  PubMed  Google Scholar 

  15. Wakankar A, et al. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 2011;3(2):161–72.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kozak KR, et al. Total antibody quantification for MMAE-conjugated antibody–drug conjugates: impact of assay format and reagents. Bioconjug Chem. 2013;24(5):772–9.

    Article  CAS  PubMed  Google Scholar 

  17. Li H, et al. General LC–MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies. Anal Chem. 2012;84(3):1267–73.

    Article  CAS  PubMed  Google Scholar 

  18. van den Broek I, Niessen WM, van Dongen WD. Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929:161–79.

    Article  PubMed  Google Scholar 

  19. Fernandez Ocana M, et al. Clinical pharmacokinetic assessment of an anti-MAdCAM monoclonal antibody therapeutic by LC–MS/MS. Anal Chem. 2012;84(14):5959–67.

  20. Kaur S, et al. Bioanalytical assay strategies for the development of antibody–drug conjugate biotherapeutics. Bioanalysis. 2013;5(2):201–26.

    Article  CAS  PubMed  Google Scholar 

  21. Lin K, Tibbitts J. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res. 2012;29(9):2354–66.

    Article  CAS  PubMed  Google Scholar 

  22. Rispens T, et al. Mechanism of immunoglobulin G4 Fab-arm exchange. J Am Chem Soc. 2011;133(26):10302–11.

    Article  CAS  PubMed  Google Scholar 

  23. Labrijn AF, et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol. 2009;27(8):767–71.

    Article  CAS  PubMed  Google Scholar 

  24. Stubenrauch K, et al. Impact of molecular processing in the hinge region of therapeutic IgG4 antibodies on disposition profiles in cynomolgus monkeys. Drug Metab Dispos. 2010;38(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  25. Casadevall A, Scharff MD. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother. 1994;38(8):1695–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Baker MP, et al. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself. 2010;1(4):314–22.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant. 2005;20(Suppl 6):vi3–9.

  28. Reichert JM. Antibodies to watch in 2014. MAbs 2013;6(1):5–14.

  29. Hansel TT, et al. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325–38.

    Article  CAS  PubMed  Google Scholar 

  30. Chung CH, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ghaderi D, et al. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev. 2012;28:147–75.

    Article  CAS  PubMed  Google Scholar 

  32. Yin BJ, et al. Generation of glyco-engineered BY2 cell lines with decreased expression of plant-specific glycoepitopes. Protein Cell. 2011;2(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  33. Moore WV, Leppert P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J Clin Endocrinol Metab. 1980;51(4):691–7.

    Article  CAS  PubMed  Google Scholar 

  34. Sauerborn M, et al. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31(2):53–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ratanji KD, et al. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

  36. Vugmeyster Y, et al. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem. 2012;3(4):73–92.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Krieckaert C, Rispens T, Wolbink G. Immunogenicity of biological therapeutics: from assay to patient. Curr Opin Rheumatol. 2012;24(3):306–11.

    Article  PubMed  Google Scholar 

  38. Shin SK, et al. Anti-erythropoietin and anti-thrombopoietin antibodies induced after administration of recombinant human erythropoietin. Int Immunopharmacol. 2011;11(12):2237–41.

    Article  CAS  PubMed  Google Scholar 

  39. Peyvandi F, Garagiola I, Seregni S. Future of coagulation factor replacement therapy. J Thromb Haemost. 2013;11(Suppl 1):84–98.

    Article  PubMed  Google Scholar 

  40. Finco D, et al. Comparison of competitive ligand-binding assay and bioassay formats for the measurement of neutralizing antibodies to protein therapeutics. J Pharm Biomed Anal. 2011;54(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  41. Buttel IC, et al. Taking immunogenicity assessment of therapeutic proteins to the next level. Biologicals. 2011;39(2):100–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jawa V, et al. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55.

    Article  CAS  PubMed  Google Scholar 

  43. Hollander I, Kunz A, Hamann PR. Selection of reaction additives used in the preparation of monomeric antibody-calicheamicin conjugates. Bioconjug Chem. 2008;19(1):358–61.

    Article  CAS  PubMed  Google Scholar 

  44. Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody–drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother. 2013;62(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  45. Hoofring SA, et al. Immunogenicity testing strategy and bioanalytical assays for antibody–drug conjugates. Bioanalysis. 2013;5(9):1041–55.

    Article  CAS  PubMed  Google Scholar 

  46. Koren E, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  47. Barbosa MD, et al. Addressing drug effects on cut point determination for an anti-drug antibody assay. J Immunol Methods. 2012;384(1–2):152–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors declare no conflicts of interest in this work and that everything was written by the stated authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody Sauerborn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauerborn, M., van Dongen, W. Practical Considerations for the Pharmacokinetic and Immunogenic Assessment of Antibody–Drug Conjugates. BioDrugs 28, 383–391 (2014). https://doi.org/10.1007/s40259-014-0096-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-014-0096-z

Keywords

Navigation