Skip to main content
Log in

A Novel Approach to Improve the Function of FGF21

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background and Objective

Fibroblast growth factor 21 (FGF21) has potent effects on normalizing glucose, lipid, and energy homeostasis, and represents an attractive novel therapy for type 2 diabetes mellitus and obesity. Approaches to improve the pharmacokinetic properties of FGF21, such as conjugation with polyethylene glycol, have been explored for therapeutic development. However, not only is there room for further pharmacokinetic improvements, additional re-engineering approaches to improve the potency and stability of FGF21 have not been reported. Here, we describe a novel approach to modify and improve the function of FGF21 by altering its C-terminal βKlotho interaction domain.

Methods

We first identified Avimer proteins that are capable of binding βKlotho. Then we explored replacing the C-terminal βKlotho interaction domain of FGF21 with a βKlotho-binding Avimer protein.

Results

Such a βKlotho-binding Avimer protein was able to fully complement the C-terminal domain function of FGF21. The resulting FGF21-Avimer fusion is functionally indistinguishable from wild type FGF21, and more tolerant of C-terminal modification.

Conclusion

These results demonstrate a viable strategy to modulate the affinity, potency, and engineering of FGF21, paving the way for further improvements of FGF21 as a therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig. 2005;115:1627–35.

    Article  PubMed  CAS  Google Scholar 

  2. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426–37.

    Article  PubMed  CAS  Google Scholar 

  3. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, et al. FGF21 reverses hepatic steatosis, increases energy expenditure and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58(1):250–9.

    Article  PubMed  CAS  Google Scholar 

  4. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. FGF21 corrects obesity in mice. Endocrinology. 2008;149:6018–27.

    Article  PubMed  CAS  Google Scholar 

  5. Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148:774–81.

    Article  PubMed  CAS  Google Scholar 

  6. Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin resistant mouse models: association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297:1105–14.

    Article  Google Scholar 

  7. Huang Z, Wang H, Lu M, Sun C, Wu X, Tan Y, et al. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS One. 2011;6:e20669.

    Article  PubMed  CAS  Google Scholar 

  8. Mu J, Pinkstaff J, Li Z, Skidmore L, Li N, Myler H, et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes. 2012;61(2):505–12.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Y, Dunbar JD, Kharitonenkov A. FGF21 as a therapeutic reagent. Adv Exp Med Biol. 2012;728:214–28.

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Li Y. Understanding the structure–function relationship between FGF19 and its mitogenic and metabolic activities. Adv Exp Med Biol. 2012;728:195–213.

    Article  PubMed  CAS  Google Scholar 

  11. Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26:312–24.

    Article  PubMed  CAS  Google Scholar 

  12. Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27:3417–28.

    Article  PubMed  CAS  Google Scholar 

  13. Asada M, Shinomiya M, Suzuki M, Honda E, Sugimoto R, Ikekita M, Imamura T. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim Biophys Acta. 2008;1780:1432–40.

    Article  PubMed  Google Scholar 

  14. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281:6120–3.

    Article  PubMed  CAS  Google Scholar 

  15. Wu X, Ge H, Gupte J, Weiszmann J, Shimamoto G, Stevens J, et al. Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem. 2007;282:29069–72.

    Article  PubMed  CAS  Google Scholar 

  16. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95.

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA. 2007;104:7432–7.

    Article  PubMed  CAS  Google Scholar 

  18. Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, et al. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol. 2008;215:1–7.

    Article  PubMed  CAS  Google Scholar 

  19. Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, et al. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci USA. 2009;106:14379–84.

    Article  PubMed  CAS  Google Scholar 

  20. Huang X, Yu C, Jin C, Yang C, Xie R, Cao D, et al. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog. 2006;45:934–42.

    Article  PubMed  CAS  Google Scholar 

  21. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152:2996–3004.

    Article  PubMed  CAS  Google Scholar 

  22. Wu X, Lemon B, Li X, Gupte J, Weiszmann J, Stevens J, et al. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J Biol Chem. 2008;283:33304–9.

    Article  PubMed  CAS  Google Scholar 

  23. Micanovic R, Raches DW, Dunbar JD, Driver DA, Bina HA, Dickinson CD, Kharitonenkov A. Different roles of N- and C-termini in the functional activity of FGF21. J Cell Physiol. 2009;219:227–34.

    Article  PubMed  CAS  Google Scholar 

  24. Yie J, Hecht R, Patel J, Stevens J, Wang W, Hawkins N, et al. FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett. 2009;583:19–24.

    Article  PubMed  CAS  Google Scholar 

  25. Silverman J, Liu Q, Bakker A, To W, Duguay A, Alba BM, et al. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol. 2005;23:1556–61.

    Article  PubMed  CAS  Google Scholar 

  26. Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem. 2009;285:5165–70.

    Article  PubMed  Google Scholar 

  27. Gupte J, Yang L, Wu X, Weiszmann J, Hecht R, Lemon B, et al. The FGFR D3 domain determines receptor selectivity for fibroblast growth factor 21. J Mol Biol. 2011;408:491–502.

    Article  PubMed  CAS  Google Scholar 

  28. Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem. 2010;285:5165–70.

    Article  PubMed  CAS  Google Scholar 

  29. Li X, Ge H, Weiszmann J, Hecht R, Li YS, Veniant MM, et al. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS Lett. 2009;583:3230–4.

    Article  PubMed  CAS  Google Scholar 

  30. Wu X, Li Y. Therapeutic utilities of fibroblast growth factor 19. Expert Opin Ther Targets. 2011;15:1307–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors are full time Amgen employees and shareholders. We thank Randy Hecht and Bryan Lemon for their generous gift of reagents, and we thank Ming Wang, Kevin Moore, and Scott Simonet for helpful discussions and critical reading of the manuscript. The Avimer sequence described is in a pending patent (US20110150901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Smith or Yang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R., Duguay, A., Weiszmann, J. et al. A Novel Approach to Improve the Function of FGF21. BioDrugs 27, 159–166 (2013). https://doi.org/10.1007/s40259-013-0013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0013-x

Keywords

Navigation