Skip to main content

Challenging Dermatologic Considerations Associated with Immune Checkpoint Inhibitors

Abstract

Immune checkpoint inhibitors have emerged as a new paradigm in oncologic care for many malignancies. However, nonspecific immune activation has led to “collateral damage” in the form of immune-related adverse events, with skin being a commonly affected organ. Cutaneous immune-related adverse events include a wide spectrum of clinical presentations and challenging considerations, often necessitating dermatology referral to support diagnosis and management, particularly for atypical presentations or more severe, cutaneous immune-related adverse events that may require specialized dermatologic evaluations including biopsy and histopathology. Close collaborations between oncologists and dermatologists may optimize clinical decision making in the following challenging management settings: non-steroidal therapies for corticosteroid-refractory, cutaneous immune-related adverse events, immune checkpoint inhibitor rechallenge, balancing cutaneous immune-related adverse events and treatments, and immune checkpoint inhibitors in patients with pre-existing autoimmune disease, skin conditions, and organ transplants. These complex clinical decisions that often lack rigorous data should be made in close collaboration with dermatologists to minimize unnecessary morbidity and mortality. This article provides a review of approaches to challenging dermatologic considerations associated with immune checkpoint inhibitor therapies.

This is a preview of subscription content, access via your institution.

References

  1. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. https://doi.org/10.1056/NEJMOA1412082/SUPPL_FILE/NEJMOA1412082_DISCLOSURES.PDF.

    CAS  Article  PubMed  Google Scholar 

  2. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://doi.org/10.1056/NEJMOA1510665/SUPPL_FILE/NEJMOA1510665_DISCLOSURES.PDF.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26. https://doi.org/10.1056/NEJMOA1613683.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67. https://doi.org/10.1056/NEJMOA1602252.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://doi.org/10.1056/NEJMOA1606774.

    CAS  Article  PubMed  Google Scholar 

  6. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91. https://doi.org/10.1016/S1470-2045(17)30422-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80. https://doi.org/10.1038/s41571-019-0218-0.

    CAS  Article  PubMed  Google Scholar 

  8. Wongvibulsin S, Pahalyants V, Kalinich M, et al. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: a United States population-level analysis. J Am Acad Dermatol. 2022;86(3):563–72. https://doi.org/10.1016/J.JAAD.2021.03.094.

    CAS  Article  PubMed  Google Scholar 

  9. Han Y, Wang J, Xu B. Cutaneous adverse events associated with immune checkpoint blockade: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021. https://doi.org/10.1016/J.CRITREVONC.2021.103376.

    Article  PubMed  Google Scholar 

  10. Yoest JM. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: a short review. Immunotargets Ther. 2017;6:73. https://doi.org/10.2147/ITT.S126227.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science. 1995;270(5238):985–8. https://doi.org/10.1126/SCIENCE.270.5238.985.

    CAS  Article  PubMed  Google Scholar 

  12. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51. https://doi.org/10.1016/S1074-7613(00)80089-8.

    CAS  Article  PubMed  Google Scholar 

  13. Sandigursky S, Mor A. Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Curr Rheumatol Rep. 2018. https://doi.org/10.1007/S11926-018-0770-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7. https://doi.org/10.1016/1074-7613(95)90125-6.

    CAS  Article  PubMed  Google Scholar 

  15. Hua C, Boussemart L, Mateus C, et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 2016;152(1):45–51. https://doi.org/10.1001/JAMADERMATOL.2015.2707.

    Article  PubMed  Google Scholar 

  16. Huang SKS, Okamoto T, Morton DL, Hoon DSB. Antibody responses to melanoma/melanocyte autoantigens in melanoma patients. J Investig Dermatol. 1998;111(4):662–7. https://doi.org/10.1046/J.1523-1747.1998.00354.X.

    CAS  Article  PubMed  Google Scholar 

  17. Flatz L, Berner F, Bomze D, et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 2019;5(7):1. https://doi.org/10.1001/JAMAONCOL.2019.0402.

    Article  PubMed Central  Google Scholar 

  18. Root-Bernstein R, Fairweather DL. Unresolved issues in theories of autoimmune disease using myocarditis as a framework. J Theor Biol. 2015;375:101. https://doi.org/10.1016/J.JTBI.2014.11.022.

    Article  PubMed  Google Scholar 

  19. Quach HT, Johnson DB, LeBoeuf NR, Zwerner JP, Dewan AK. Cutaneous adverse events caused by immune checkpoint inhibitors. J Am Acad Dermatol. 2021;85(4):956–66. https://doi.org/10.1016/J.JAAD.2020.09.054.

    CAS  Article  PubMed  Google Scholar 

  20. National Cancer Institute. Common terminology criteria for adverse events (CTCAE) common terminology criteria for adverse events (CTCAE) v5.0. Published online 2017. https://www.meddra.org/. Accessed 29 Nov 2021.

  21. Thompson JA, Schneider BJ, Brahmer J, et al. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2020;18(3):230–41. https://doi.org/10.6004/JNCCN.2020.0012.

    CAS  Article  Google Scholar 

  22. Schneider BJ, Naidoo J, Santomasso BD, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021. https://doi.org/10.1200/JCO.21.01440.

    Article  PubMed  Google Scholar 

  23. Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv119–42. https://doi.org/10.1093/ANNONC/MDX225.

    CAS  Article  PubMed  Google Scholar 

  24. Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer. 2021;9(6):2435. https://doi.org/10.1136/JITC-2021-002435.

    Article  Google Scholar 

  25. Nadelmann ER, Yeh JE, Chen ST. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors: a systematic review. JAMA Oncol. 2021. https://doi.org/10.1001/JAMAONCOL.2021.4318.

    Article  Google Scholar 

  26. Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95. https://doi.org/10.1186/S40425-017-0300-Z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Barrios DM, Phillips GS, Freites-Martinez A, et al. Outpatient dermatology consultations for oncology patients with acutedermatologic adverse events impact anticancer therapy interruption: aretrospective study. J Eur Acad Dermatol Venereol. 2020;34(6):1340. https://doi.org/10.1111/JDV.16159.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Chen ST, Molina GE, Lo JA, et al. Dermatology consultation reduces interruption of oncologic management among hospitalized patients with immune-related adverse events: a retrospective cohort study. J Am Acad Dermatol. 2020;82(4):994–6. https://doi.org/10.1016/J.JAAD.2019.09.026.

    CAS  Article  PubMed  Google Scholar 

  29. Thompson LL, Li EB, Krasnow NA, et al. Effect of dermatological consultation on survival in patients with checkpoint inhibitor-associated cutaneous toxicity. Br J Dermatol. 2021;185(3):627–35. https://doi.org/10.1111/BJD.20074.

    CAS  Article  PubMed  Google Scholar 

  30. Gerstein W, Gniadecki R. Cutaneous immune-related adverse events (irAEs) to immune checkpoint inhibitors: a dermatology perspective on management. J Cutan Med Surg. 2021;25(1):59–76. https://doi.org/10.1177/1203475420943260.

    CAS  Article  PubMed  Google Scholar 

  31. Naing A, Hajjar J, Gulley JL, et al. Strategies for improving the management of immune-related adverse events. J Immunother Cancer. 2020;8(2): e001754. https://doi.org/10.1136/JITC-2020-001754.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Esfahani K, Elkrief A, Calabrese C, et al. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol. 2020;17(8):504–15. https://doi.org/10.1038/S41571-020-0352-8.

    CAS  Article  PubMed  Google Scholar 

  33. Martins F, Obeid M. Personalized treatment of immune-related adverse events—balance is required. Nat Rev Clin Oncol. 2020;17(8):517. https://doi.org/10.1038/s41571-020-0400-4.

    Article  PubMed  Google Scholar 

  34. Ortonne N, Valeyrie-Allanore L, Bastuji-Garin S, et al. Histopathology of drug rash with eosinophilia and systemic symptoms syndrome: a morphological and phenotypical study. Br J Dermatol. 2015;173(1):50–8. https://doi.org/10.1111/BJD.13683.

    CAS  Article  PubMed  Google Scholar 

  35. Ellis SR, Vierra AT, Millsop JW, Lacouture ME, Kiuru M. Dermatologic toxicities to immune checkpoint inhibitor therapy: a review of histopathologic features. J Am Acad Dermatol. 2020;83(4):1130. https://doi.org/10.1016/J.JAAD.2020.04.105.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68. https://doi.org/10.1200/JCO.2017.77.6385.

    CAS  Article  PubMed  Google Scholar 

  37. Ibraheim H, Perucha E, Powell N. Pathology of immune-mediated tissue lesions following treatment with immune checkpoint inhibitors. Rheumatology (Oxford). 2019;58(Suppl. 7):vii17. https://doi.org/10.1093/RHEUMATOLOGY/KEZ465.

    CAS  Article  Google Scholar 

  38. Gault A, Anderson AE, Plummer R, Stewart C, Pratt AG, Rajan N. Cutaneous immune-related adverse events in patients with melanoma treated with checkpoint inhibitors. Br J Dermatol. 2021;185(2):263–71. https://doi.org/10.1111/BJD.19750.

    CAS  Article  PubMed  Google Scholar 

  39. Apalla Z, Rapoport B, Sibaud V. Dermatologic immune-related adverse events: the toxicity spectrum and recommendations for management. Int J Womens Dermatol. 2021;7(5 Part A):625–35. https://doi.org/10.1016/J.IJWD.2021.10.005.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hashimoto H, Ito T, Ichiki T, Yamada Y, Oda Y, Furue M. The clinical and histopathological features of cutaneous immune-related adverse events and their outcomes. J Clin Med. 2021;10(4):1–13. https://doi.org/10.3390/JCM10040728.

    Article  Google Scholar 

  41. Elgart ML. Cutaneous sarcoidosis: definitions and types of lesions. Clin Dermatol. 1986;4(4):35–45. https://doi.org/10.1016/0738-081X(86)90032-5.

    CAS  Article  PubMed  Google Scholar 

  42. Yanardag H, Tetikkurt C, Bilir M, Demirci S, Iscimen A. Diagnosis of cutaneous sarcoidosis; clinical and the prognostic significance of skin lesions. Multidiscip Respir Med. 2013;8(3):1–6. https://doi.org/10.1186/2049-6958-8-26/TABLES/4.

    Article  Google Scholar 

  43. Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol. 2020;83(5):1255–68. https://doi.org/10.1016/J.JAAD.2020.03.132.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Siegel J, Totonchy M, Damsky W, et al. Bullous disorders associated with anti-PD-1 and anti–PD-L1 therapy: a retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol. 2018;79(6):1081–8. https://doi.org/10.1016/J.JAAD.2018.07.008.

    CAS  Article  PubMed  Google Scholar 

  45. Gonçalo MM, Cardoso JC, Gouveia MP, et al. Histopathology of the exanthema in DRESS is not specific but may indicate severity of systemic involvement. Am J Dermatopathol. 2016;38(6):423–33. https://doi.org/10.1097/DAD.0000000000000439.

    Article  PubMed  Google Scholar 

  46. Uemura M, Faisal F, Haymaker C, et al. A case report of Grover’s disease from immunotherapy-a skin toxicity induced by inhibition of CTLA-4 but not PD-1. J Immunother Cancer. 2016. https://doi.org/10.1186/S40425-016-0157-6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Koelzer VH, Buser T, Willi N, et al. Grover’s-like drug eruption in a patient with metastatic melanoma under ipilimumab therapy. J Immunother Cancer. 2016. https://doi.org/10.1186/S40425-016-0151-Z.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thompson JA, Schneider BJ, Brahmer J, et al. Management of immunotherapy-related toxicities, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17(3):255–89. https://doi.org/10.6004/JNCCN.2019.0013.

    CAS  Article  Google Scholar 

  49. Ingen-Housz-Oro S, Milpied B, Badrignans M, et al. Severe blistering eruptions induced by immune checkpoint inhibitors: a multicentre international study of 32 cases. Melanoma Res. 2022;32(3):205–10. https://doi.org/10.1097/CMR.0000000000000819.

    Article  PubMed  Google Scholar 

  50. Lesage C, Longvert C, Prey S, et al. Incidence and clinical impact of anti-TNFα treatment of severe immune checkpoint inhibitor-induced colitis in advanced melanoma: the Mecolit Survey. J Immunother. 2019;42(5):175–9. https://doi.org/10.1097/CJI.0000000000000268.

    CAS  Article  PubMed  Google Scholar 

  51. Montfort A, Dufau C, Colacios C, et al. Anti-TNF, a magic bullet in cancer immunotherapy? J Immunother Cancer. 2019;7(1):1–4. https://doi.org/10.1186/S40425-019-0802-Y/FIGURES/1.

    Article  Google Scholar 

  52. Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N, Ségui B. The TNF paradox in cancer progression and immunotherapy. Front Immunol. 2019;10(July):1818. https://doi.org/10.3389/FIMMU.2019.01818/BIBTEX.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Charles KA, Kulbe H, Soper R, et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Investig. 2009;119(10):3011–23. https://doi.org/10.1172/JCI39065.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Phillips GS, Wu J, Hellmann MD, et al. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol. 2019;37(30):2746–58. https://doi.org/10.1200/JCO.18.02141.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Voudouri D, Nikolaou V, Laschos K, et al. Anti-PD1/PDL1 induced psoriasis. Curr Probl Cancer. 2017;41(6):407–12. https://doi.org/10.1016/J.CURRPROBLCANCER.2017.10.003.

    Article  PubMed  Google Scholar 

  56. del Rosso JQ, Kim GK. The rationale behind topical vitamin D analogs in the treatment of psoriasis: where does topical calcitriol fit in? J Clin Aesthet Dermatol. 2010;3(8):46.

    Google Scholar 

  57. Trémezaygues L, Reichrath J. Vitamin D analogs in the treatment of psoriasis: where are we standing and where will we be going? Dermatoendocrinology. 2011;3(3):180. https://doi.org/10.4161/DERM.3.3.17534.

    Article  Google Scholar 

  58. Weinstein GD, Koo JYM, Krueger GG, et al. Tazarotene cream in the treatment of psoriasis: two multicenter, double-blind, randomized, vehicle-controlled studies of the safety and efficacy of tazarotene creams 0.05% and 0.1% applied once daily for 12 weeks. J Am Acad Dermatol. 2003;48(5):760–7. https://doi.org/10.1067/MJD.2003.103.

    Article  PubMed  Google Scholar 

  59. Angelo JS, Kar BR, Thomas J. Comparison of clinical efficacy of topical tazarotene 0.1% cream with topical clobetasol propionate 0.05% cream in chronic plaque psoriasis: a double-blind, randomized, right-left comparison study. Indian J Dermatol Venereol Leprol. 2007;73(1):65. https://doi.org/10.4103/0378-6323.30663.

    Article  PubMed  Google Scholar 

  60. Fallon JD, Sober A. Relief of pruritus in patients with atopic dermatitis after treatment with topical doxepin cream. J Am Acad Dermatol. 1994;31(4):613–6. https://doi.org/10.1016/S0190-9622(94)70225-X.

    Article  PubMed  Google Scholar 

  61. Amatore F, Villani A-P, Tauber M, Viguier M, Guillot B, Psoriasis Research Group of the French Society of Dermatology (Groupe de Recherche sur le Psoriasis de la Société Française de Dermatologie). French guidelines on the use of systemic treatments for moderate-to-severe psoriasis in adults. J Eur Acad Dermatol Venereol. 2019;33(3):464–83. https://doi.org/10.1111/JDV.15340.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Perez-Ruiz E, Minute L, Otano I, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature. 2019;569(7756):428–32. https://doi.org/10.1038/S41586-019-1162-Y.

    CAS  Article  PubMed  Google Scholar 

  63. Kaye A, Gordon SC, Deverapalli SC, Her MJ, Rosmarin D. Dupilumab for the treatment of recalcitrant bullous pemphigoid. JAMA Dermatol. 2018;154(10):1225–6. https://doi.org/10.1001/JAMADERMATOL.2018.2526.

    Article  PubMed  Google Scholar 

  64. Zhang Y, Xu Q, Chen L, et al. Efficacy and safety of dupilumab in moderate-to-severe bullous pemphigoid. Front Immunol. 2021;12:4144. https://doi.org/10.3389/FIMMU.2021.738907/BIBTEX.

    Article  Google Scholar 

  65. Jolles S, Sewell WAC, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005;142(1):1. https://doi.org/10.1111/J.1365-2249.2005.02834.X.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Malviya N, Tattersall IW, Leventhal J, Alloo A. Cutaneous immune-related adverse events to checkpoint inhibitors. Clin Dermatol. 2020;38(6):660–78. https://doi.org/10.1016/J.CLINDERMATOL.2020.06.011.

    Article  PubMed  Google Scholar 

  67. Eskin-Schwartz M, David M, Mimouni D. Mycophenolate mofetil for the management of autoimmune bullous diseases. Dermatol Clin. 2011;29(4):555–9. https://doi.org/10.1016/J.DET.2011.06.012.

    CAS  Article  PubMed  Google Scholar 

  68. Nousari HC, Sragovich A, Kimyai-Asadi A, Orlinsky D, Anhalt GJ. Mycophenolate mofetil in autoimmune and inflammatory skin disorders. J Am Acad Dermatol. 1999;40(2):265–8. https://doi.org/10.1016/S0190-9622(99)70203-3.

    CAS  Article  PubMed  Google Scholar 

  69. Shen J, Chang J, Mendenhall M, Cherry G, Goldman JW, Kulkarni RP. Diverse cutaneous adverse eruptions caused by anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) immunotherapies: clinical features and management. Ther Adv Med Oncol. 2018. https://doi.org/10.1177/1758834017751634.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Birnbaum MR, Ma MW, Fleisig S, et al. Nivolumab-related cutaneous sarcoidosis in a patient with lung adenocarcinoma. JAAD Case Rep. 2017;3(3):208–11. https://doi.org/10.1016/J.JDCR.2017.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sowerby L, Dewan AK, Granter S, Gandhi L, LeBoeuf NR. Rituximab treatment of nivolumab-induced bullous pemphigoid. JAMA Dermatol. 2017;153(6):603–5. https://doi.org/10.1001/JAMADERMATOL.2017.0091.

    Article  PubMed  Google Scholar 

  72. Ito J, Fujimoto D, Nakamura A, et al. Aprepitant for refractory nivolumab-induced pruritus. Lung Cancer. 2017;109:58–61. https://doi.org/10.1016/J.LUNGCAN.2017.04.020.

    Article  PubMed  Google Scholar 

  73. Barrios DM, Phillips GS, Geisler AN, et al. IgE blockade with omalizumab reduces pruritus related to immune checkpoint inhibitors and anti-HER2 therapies. Ann Oncol. 2021;32(6):736–45. https://doi.org/10.1016/J.ANNONC.2021.02.016.

    CAS  Article  PubMed  Google Scholar 

  74. Kouwenhoven TA, van de Kerkhof PCM, Kamsteeg M. Use of oral antidepressants in patients with chronic pruritus: a systematic review. J Am Acad Dermatol. 2017;77(6):1068-73.e7. https://doi.org/10.1016/J.JAAD.2017.08.025.

    CAS  Article  PubMed  Google Scholar 

  75. Kaur R, Sinha VR. Antidepressants as antipruritic agents: a review. Eur Neuropsychopharmacol. 2018;28(3):341–52. https://doi.org/10.1016/J.EURONEURO.2018.01.007.

    CAS  Article  PubMed  Google Scholar 

  76. Yeo B, Tey HL. Effective treatment of notalgia paresthetica with amitriptyline. J Dermatol. 2013;40(6):505–6. https://doi.org/10.1111/1346-8138.12154.

    Article  PubMed  Google Scholar 

  77. Davis MP, Frandsen JL, Walsh D, Andresen S, Taylor S. Mirtazapine for pruritus. J Pain Symptom Manag. 2003;25(3):288–91. https://doi.org/10.1016/S0885-3924(02)00645-0.

    Article  Google Scholar 

  78. Shohrati M, Davoudi SM, Keshavarz S, Sadr B, Tajik A. Cetirizine, doxepine, and hydroxyzine in the treatment of pruritus due to sulfur mustard: a randomized clinical trial. Cutan Ocul Toxicol. 2008;26(3):249–55. https://doi.org/10.1080/15569520701212340.

    CAS  Article  Google Scholar 

  79. Eggermont AMM, Kicinski M, Blank CU, et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2020;6(4):519–27. https://doi.org/10.1001/JAMAONCOL.2019.5570.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Baldini E, Lunghi A, Cortesi E, et al. Immune-related adverse events correlate with clinical outcomes in NSCLC patients treated with nivolumab: the Italian NSCLC expanded access program. Lung Cancer. 2020;140:59–64. https://doi.org/10.1016/J.LUNGCAN.2019.12.014.

    Article  PubMed  Google Scholar 

  81. Gerber DE, Hsiehchen D, Watters MK, Lu R, Xie Y. Variation in the assessment of immune-related adverse event occurrence, grade, and timing in patients receiving immune checkpoint inhibitors. JAMA Netw Open. 2019;2(9): e1911519. https://doi.org/10.1001/JAMANETWORKOPEN.2019.11519.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Abu-Sbeih H, Ali FS, Naqash AR, et al. Resumption of immune checkpoint inhibitor therapy after immune-mediated colitis. J Clin Oncol. 2019;37(30):2738. https://doi.org/10.1200/JCO.19.00320.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Pollack MH, Betof A, Dearden H, et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2018;29(1):250. https://doi.org/10.1093/ANNONC/MDX642.

    CAS  Article  PubMed  Google Scholar 

  84. Allouchery M, Lombard T, Martin M, et al. Safety of immune checkpoint inhibitor rechallenge after discontinuation for grade ≥2 immune-related adverse events in patients with cancer. J Immunother Cancer. 2020;8(2): e001622. https://doi.org/10.1136/JITC-2020-001622.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao Q, Zhang J, Xu L, et al. Safety and efficacy of the rechallenge of immune checkpoint inhibitors after immune-related adverse events in patients with cancer: a systemic review and meta-analysis. Front Immunol. 2021. https://doi.org/10.3389/FIMMU.2021.730320/FULL.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Inno A, Roviello G, Ghidini A, et al. Rechallenge of immune checkpoint inhibitors: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;165: 103434. https://doi.org/10.1016/J.CRITREVONC.2021.103434.

    Article  PubMed  Google Scholar 

  87. Santini FC, Rizvi H, Plodkowski AJ, et al. Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol Res. 2018;6(9):1093–9. https://doi.org/10.1158/2326-6066.CIR-17-0755.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Dolladille C, Ederhy S, Sassier M, et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol. 2020;6(6):865–71. https://doi.org/10.1001/JAMAONCOL.2020.0726.

    Article  PubMed  Google Scholar 

  89. Haanen J, Ernstoff M, Wang Y, et al. Rechallenge patients with immune checkpoint inhibitors following severe immune-related adverse events: review of the literature and suggested prophylactic strategy. J Immunother Cancer. 2020;8(1):604. https://doi.org/10.1136/JITC-2020-000604.

    Article  Google Scholar 

  90. Albandar HJ, Fuqua J, Albandar JM, Safi S, Merrill SA, Ma PC. Immune-related adverse events (irAE) in cancer immune checkpoint inhibitors (ICI) and survival outcomes correlation: to rechallenge or not? Cancers (Basel). 2021;13(5):1–15. https://doi.org/10.3390/CANCERS13050989.

    Article  Google Scholar 

  91. Shah P, Boland P, Pavlick AC. Response to immune checkpoint inhibitor (ICI) rechallenge after high-grade immune related adverse events (irAE) in patients (pts) with metastatic melanoma (MM). J Clin Oncol. 2020;38(15_Suppl):10045. https://doi.org/10.1200/JCO.2020.38.15_SUPPL.10045.

    Article  Google Scholar 

  92. Ravi P, Mantia C, Su C, et al. Evaluation of the safety and efficacy of immunotherapy rechallenge in patients with renal cell carcinoma. JAMA Oncol. 2020;6(10):1606–10. https://doi.org/10.1001/JAMAONCOL.2020.2169.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18. https://doi.org/10.1016/S1470-2045(15)00083-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Inno A, Lo Russo G, Salgarello M, et al. The evolving landscape of criteria for evaluating tumor response in the era of cancer immunotherapy: from Karnofsky to iRECIST. Tumori. 2018;104(2):88–95. https://doi.org/10.1177/0300891618766173.

    Article  PubMed  Google Scholar 

  95. Prior LM, Harrold E, O’Leary CG, et al. Toxicities in immunotherapy: can they predict response? https://doi-org.proxy.library.vanderbilt.edu/101200/JCO20163415_suppl.e14534. 2016;34(15_Suppl.):e14534. https://doi.org/10.1200/JCO.2016.34.15_SUPPL.E14534. Accessed 4 June 2022.

  96. Suo A, Chan Y, Beaulieu C, et al. Anti-PD1-induced immune-related adverse events and survival outcomes in advanced melanoma. Oncologist. 2020;25(5):438–46. https://doi.org/10.1634/THEONCOLOGIST.2019-0674.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Park BC, Stone CA, Dewan AK, Johnson DB. Hypersensitivity reactions and immune-related adverse events to immune checkpoint inhibitors: approaches, mechanisms, and models. Immunol Allergy Clin N Am. 2022;42(2):285–305. https://doi.org/10.1016/J.IAC.2021.12.006.

    Article  Google Scholar 

  98. Zhang Q, Vignali DAA. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity. 2016;44(5):1034–51. https://doi.org/10.1016/J.IMMUNI.2016.04.017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 2016;310:27–41. https://doi.org/10.1016/J.CELLIMM.2016.09.009.

    CAS  Article  PubMed  Google Scholar 

  100. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMOA1003466/SUPPL_FILE/NEJMOA1003466_DISCLOSURES.PDF.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Haanen J, Ernstoff MS, Wang Y, et al. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol. 2020;31(6):724–44. https://doi.org/10.1016/J.ANNONC.2020.03.285.

    CAS  Article  PubMed  Google Scholar 

  102. Khan SA, Pruitt SL, Xuan L, Gerber DE. Prevalence of autoimmune disease among patients with lung cancer: implications for immunotherapy treatment options. JAMA Oncol. 2016;2(11):1507–8. https://doi.org/10.1001/JAMAONCOL.2016.2238.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CEM. Psoriasis prevalence in adults in the United States. JAMA Dermatol. 2021;157(8):940–6. https://doi.org/10.1001/JAMADERMATOL.2021.2007.

    Article  PubMed  Google Scholar 

  104. Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236(6):571–92. https://doi.org/10.1159/000506103.

    Article  PubMed  Google Scholar 

  105. Wertenteil S, Garg A, Strunk A, Alloo A. Prevalence estimates for pemphigoid in the United States: a sex-adjusted and age-adjusted population analysis. J Am Acad Dermatol. 2019;80(3):655–9. https://doi.org/10.1016/J.JAAD.2018.08.030.

    Article  PubMed  Google Scholar 

  106. Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann Intern Med. 2018. https://doi.org/10.7326/M17-2073.

    Article  PubMed  Google Scholar 

  107. Danlos FX, Voisin AL, Dyevre V, et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur J Cancer. 2018;91:21–9. https://doi.org/10.1016/J.EJCA.2017.12.008.

    CAS  Article  PubMed  Google Scholar 

  108. Tison A, Quéré G, Misery L, et al. Safety and efficacy of immune checkpoint inhibitors in patients with cancer and preexisting autoimmune disease: a nationwide, multicenter cohort study. Arthritis Rheumatol. 2019;71(12):2100–11. https://doi.org/10.1002/ART.41068/ABSTRACT.

    CAS  Article  PubMed  Google Scholar 

  109. Halle BR, Betof Warner A, Zaman FY, et al. Immune checkpoint inhibitors in patients with pre-existing psoriasis: safety and efficacy. J Immunother Cancer. 2021;9(10): e003066. https://doi.org/10.1136/JITC-2021-003066.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Johnson DB, Sullivan RJ, Ott PA, et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2016;2(2):234–40. https://doi.org/10.1001/JAMAONCOL.2015.4368.

    Article  PubMed  Google Scholar 

  111. Menzies AM, Johnson DB, Ramanujam S, et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol. 2017;28(2):368–76. https://doi.org/10.1093/ANNONC/MDW443.

    CAS  Article  PubMed  Google Scholar 

  112. Engels EA, Pfeiffer RM, Fraumeni JF, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–901. https://doi.org/10.1001/JAMA.2011.1592.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Fisher J, Zeitouni N, Fan W, Samie FH. Immune checkpoint inhibitor therapy in solid organ transplant recipients: a patient-centered systematic review. J Am Acad Dermatol. 2020;82(6):1490–500. https://doi.org/10.1016/J.JAAD.2019.07.005.

    CAS  Article  PubMed  Google Scholar 

  114. Abdel-Wahab N, Safa H, Abudayyeh A, et al. Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: an institutional experience and a systematic review of the literature. J Immunother Cancer. 2019;7(1):1–10. https://doi.org/10.1186/S40425-019-0585-1/FIGURES/1.

    Article  Google Scholar 

  115. Kittai AS, Oldham H, Cetnar J, Taylor M. Immune checkpoint inhibitors in organ transplant patients. J Immunother. 2017;40(7):277–81. https://doi.org/10.1097/CJI.0000000000000180.

    CAS  Article  PubMed  Google Scholar 

  116. Aguirre LE, Guzman ME, Lopes G, Hurley J. Immune checkpoint inhibitors and the risk of allograft rejection: a comprehensive analysis on an emerging issue. Oncologist. 2019;24(3):394. https://doi.org/10.1634/THEONCOLOGIST.2018-0195.

    Article  PubMed  Google Scholar 

  117. Saberianfar S, Nguyen LS, Manouchehri A, et al. Solid organ transplant rejection associated with immune-checkpoint inhibitors. Ann Oncol. 2020;31(4):543–4. https://doi.org/10.1016/J.ANNONC.2020.01.012.

    CAS  Article  PubMed  Google Scholar 

  118. De Bruyn P, Van Gestel D, Ost P, et al. Immune checkpoint blockade for organ transplant patients with advanced cancer: how far can we go? Curr Opin Oncol. 2019;31(2):54–64. https://doi.org/10.1097/CCO.0000000000000505.

    CAS  Article  PubMed  Google Scholar 

  119. Wu CK, Juang GD, Lai HC. Tumor regression and preservation of graft function after combination with anti-PD-1 immunotherapy without immunosuppressant titration. Ann Oncol. 2017;28(11):2895–6. https://doi.org/10.1093/ANNONC/MDX409.

    Article  PubMed  Google Scholar 

  120. Cooper JE. Evaluation and treatment of acute rejection in kidney allografts. Clin J Am Soc Nephrol. 2020;15(3):430–8. https://doi.org/10.2215/CJN.11991019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl. 3):S1–155. https://doi.org/10.1111/J.1600-6143.2009.02834.X.

  122. ClinicalTrials.gov. Tacrolimus, nivolumab, and ipilimumab in treating kidney transplant recipients with selected unresectable or metastatic cancers: full text view. https://clinicaltrials.gov/ct2/show/NCT03816332. Accessed 29 Nov 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Johnson.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflicts of interest/competing interests

BCP, SJ, STC, AD, and DBJ have no conflicts of interest that are directly relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

BCP, SJ, STC, AD, and DBJ wrote the main manuscript text. BCP and DBJ prepared Tables 1 and 2. All authors reviewed the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, B.C., Jung, S., Chen, S.T. et al. Challenging Dermatologic Considerations Associated with Immune Checkpoint Inhibitors. Am J Clin Dermatol (2022). https://doi.org/10.1007/s40257-022-00706-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40257-022-00706-y