Skip to main content
Log in

Selective JAK1 Inhibitors for the Treatment of Atopic Dermatitis: Focus on Upadacitinib and Abrocitinib

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Atopic dermatitis is a common, chronic, immune-mediated disease associated with several comorbidities. Elevated levels of T helper (Th)2, Th22, and also some Th1 and Th17 cytokines are found in atopic dermatitis skin lesions. Similar to psoriasis, there is a tendency towards increased use of more targeted therapies. However, there are still several unmet needs in the treatment of atopic dermatitis concerning long-term efficacy, tolerability, safety, route of administration, and cost. The increased knowledge of atopic dermatitis pathogenesis and the role of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways has allowed the development of new compounds to inhibit this intracellular signaling pathway implicated in atopic dermatitis-related immune responses. Currently, JAK inhibitors are an important focus of therapeutic research for atopic dermatitis. Upadacitinib and abrocitinib are oral small molecules that inhibit the JAK/STAT pathway by selectively blocking JAK1. Data from phase II and III trials are encouraging, revealing that JAK1 inhibitors are effective and well-tolerated agents for moderate-to-severe atopic dermatitis. Selective JAK1 inhibitors may represent an important therapeutic option to be included in the treatment algorithm of atopic dermatitis, owing to oral administration and a favorable safety and tolerability profile. In this article, we review the current evidence on the efficacy and safety of oral selective JAK1 inhibitors for the treatment of atopic dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deckers IAG, McLean S, Linssen S, et al. Investigating international time trends in the incidence and prevalence of atopic eczema 1990–2010: a systematic review of epidemiological studies. PLoS One. 2012;7:e39803.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Investig Dermatol. 2014;134:1527–34.

    CAS  PubMed  Google Scholar 

  3. Ronnstad ATM, Halling-Overgaard AS, Hamann CR, et al. Association of atopic dermatitis with depression, anxiety, and suicidal ideation in children and adults: a systematic review and meta-analysis. J Am Acad Dermatol. 2018;79(3):448–56.e30.

    PubMed  Google Scholar 

  4. Ferreira S, Torres T. Dupilumab for the treatment of atopic dermatitis. Actas Dermosifiliogr. 2018;109(3):230–40.

    CAS  PubMed  Google Scholar 

  5. Guttman-Yassky E, Thaçi D, Pangan AL, et al. Upadacitinib in adults with moderate-to-severe atopic dermatitis: 16-week results from a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2020;145(3):877–84. https://doi.org/10.1016/j.jaci.2019.11.025.

    Article  CAS  PubMed  Google Scholar 

  6. Ring J, Alomar A, Bieber T, et al. Guidelines for treatment of atopic eczema (atopic dermatitis) part 1. J Eur Acad Dermatol Venereol. 2012;26(8):1045–60.

    CAS  PubMed  Google Scholar 

  7. Roekevisch E, Spuls PI, Kuester D, Limpens J, Schmitt J. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systematic review. J Allergy Clin Immunol. 2014;133(2):429–38.

    CAS  PubMed  Google Scholar 

  8. Baghoomian W, Na C, Simpson EL. New and emerging biologics for atopic dermatitis. Am J Clin Dermatol. 2020;21:457–65. https://doi.org/10.1007/s40257-020-00515-1.

    Article  PubMed  Google Scholar 

  9. Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol. 2013;132:1132–8.

    PubMed  Google Scholar 

  10. Simpson EL, Bieber T, Guttman-Yassky E, SOLO 1 and SOLO 2 Investigators, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–48.

    CAS  PubMed  Google Scholar 

  11. Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–303.

    CAS  PubMed  Google Scholar 

  12. Thaçi D, Simpson EL, Beck LA, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis (AD) inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet. 2016;387(10013):40–52.

    PubMed  Google Scholar 

  13. He H, Guttman-Yassky E. JAK inhibitors for atopic dermatitis: an update. Am J Clin Dermatol. 2019;20(2):181–92.

    PubMed  Google Scholar 

  14. Weidinger S, Beck LA, Bieber T, et al. Atopic dermatitis. Nat Rev Dis Primer. 2018;4:1.

    Google Scholar 

  15. Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105(2):99–106.

    CAS  PubMed  Google Scholar 

  16. Silverberg JI, Simpson EL. Association between severe eczema in children and multiple comorbid conditions and increased healthcare utilization. Pediatr Allergy Immunol. 2013;24(5):476–86.

    PubMed  PubMed Central  Google Scholar 

  17. Gittler JK, Shemer A, Suárez-Fariñas M, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kou K, Aihara M, Matsunaga T, et al. Association of serum interleukin-18 and other biomarkers with disease severity in adults with atopic dermatitis. Arch Dermatol Res. 2012;304(4):305–12.

    CAS  PubMed  Google Scholar 

  19. Kim BS, Wang K, Siracusa MC, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193(7):3717–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Seltmann J, Roesner LM, von Hesler F-W, et al. IL-33 impacts on the skin barrier by downregulating the expression of filaggrin. J Allergy Clin Immunol. 2015;135:1659–1661.e4.

    CAS  PubMed  Google Scholar 

  21. Cole C, Kroboth K, Schurch NJ, et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134:82–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.

    CAS  PubMed  Google Scholar 

  23. Fallon PG, Sasaki T, Sandilands A, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet. 2009;41:602–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Czarnowicki T, Malajian D, Shemer A, et al. Skin-homing and systemic T-cell subsets show higher activation in atopic dermatitis versus psoriasis. J Allergy Clin Immunol. 2015;136:208–11.

    PubMed  Google Scholar 

  25. Malajian D, Guttman-Yassky E. New pathogenic and therapeutic paradigms in atopic dermatitis. Cytokine. 2015;73(2):311–8.

    CAS  PubMed  Google Scholar 

  26. Park HY, Kim CR, Huh IS, et al. Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol. 2013;25(4):410–6.

    PubMed  PubMed Central  Google Scholar 

  27. Renert-Yuval Y, Guttman-Yassky E. What is new in atopic dermatitis. Dermatol Clin. 2019;37(2):205–13. https://doi.org/10.1016/j.det.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  28. Thepen T, Langeveld-Wildschut EG, Bihari IC, et al. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: an immunocytochemical study. J Allergy Clin Immunol. 1996;97(3):828–37.

    CAS  PubMed  Google Scholar 

  29. Suarez-Farinas M, Dhingra N, Gittler J, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guttman-Yassky E, Silverberg JI, Nemoto O, et al. Baricitinib in adult patients with moderate-to-severe atopic dermatitis: a phase 2 parallel, double-blinded, randomized placebo-controlled multiple-dose study. J Am Acad Dermatol. 2019;80(4):913–921.e9. https://doi.org/10.1016/j.jaad.2018.01.018.

    Article  CAS  PubMed  Google Scholar 

  31. Wolk K, Witte E, Witte K, et al. Biology of interleukin-22. Semin Immunopathol. 2010;32:17–31.

    CAS  PubMed  Google Scholar 

  32. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174:3695–702.

    CAS  PubMed  Google Scholar 

  33. Noda S, Suárez-Fariñas M, Ungar B, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136:1254–64.

    CAS  PubMed  Google Scholar 

  34. Albanesi C, Fairchild HR, Madonna S, et al. IL-4 and IL-13 negatively regulate TNF-alpha and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J Immunol. 2007;179:984–92.

    CAS  PubMed  Google Scholar 

  35. Sehra S, Yao Y, Howell MD, et al. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J Immunol. 2010;184:3186–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–60.

    CAS  PubMed  Google Scholar 

  37. Brauweiler AM, Goleva E, Leung DYM. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Investig Dermatol. 2014;134:2114–21.

    CAS  PubMed  Google Scholar 

  38. Howell M, Wollenberg A, Garro R, et al. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol. 2006;117:836–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Schaft J, Politiek K, van den Reek JMPA, et al. Drug survival for ciclosporin A in a long-term daily practice cohort of adult patients with atopic dermatitis. Br J Dermatol. 2015;172:1621–7.

    PubMed  Google Scholar 

  40. Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2:e24137. https://doi.org/10.4161/jkst.24137.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Howell MD, Fitzsimons C, Smith PA. JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease. Ann Allergy Asthma Immunol. 2018;120:367–75. https://doi.org/10.1016/j.anai.2018.02.012.

    Article  CAS  PubMed  Google Scholar 

  42. O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368:161–70.

    PubMed  PubMed Central  Google Scholar 

  43. Pesu M, Laurence A, Kishore N, et al. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223:132–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirahara K, Schwartz D, Gadina M, et al. Targeting cytokine signaling in autoimmunity: back to the future and beyond. Curr Opin Immunol. 2016;43:89–97.

    CAS  PubMed  Google Scholar 

  45. Alves de Medeiros AK, Speeckaert R, Desmet E, et al. JAK3 as an emerging target for topical treatment of inflammatory skin diseases. PLoS One. 2016;11:e0164080.

    PubMed  PubMed Central  Google Scholar 

  46. Shreberk-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: a systematic review. J Am Acad Dermatol. 2017;76(745–53):e19.

    Google Scholar 

  47. Damsky W, King BA. JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol. 2017;76:736–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hald A, Andrés RM, Salskov-Iversen ML, et al. STAT1 expression and activation is increased in lesional psoriatic skin. Br J Dermatol. 2013;168:302–10.

    CAS  PubMed  Google Scholar 

  49. Oetjen LK, Mack MR, Feng J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171(217–28):e13.

    Google Scholar 

  50. Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18:374–84.

    CAS  PubMed  Google Scholar 

  51. Ghoreschi K, Gadina M. Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol. 2014;23(1):7–11.

    CAS  PubMed  Google Scholar 

  52. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    PubMed  PubMed Central  Google Scholar 

  54. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178(5):2623–9.

    CAS  PubMed  Google Scholar 

  55. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.

    CAS  PubMed  Google Scholar 

  56. Brandt EB, Sivaprasad E. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):110. https://doi.org/10.4172/2155-9899.1000110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Shea JJ, Kontzias A, Yamaoka K, et al. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72:ii111–5.

    PubMed  PubMed Central  Google Scholar 

  58. Furue K, et al. The IL-13-OVOL1-FLG axis in atopic dermatitis. Immunology. 2019;158(4):281–6. https://doi.org/10.1111/imm.13120.

    Article  CAS  PubMed  Google Scholar 

  59. Silverberg JI, Kantor R. The role of interleukins 4 and/or 13 in the pathophysiology and treatment of atopic dermatitis. Dermatol Clin. 2017;35(3):327–34.

    CAS  PubMed  Google Scholar 

  60. Lou H, Lu J, Choi EB, et al. Expression of IL-22 in the skin causes Th2-biased immunity, epidermal barrier dysfunction, and pruritus via stimulating epithelial Th2 cytokines and the GRP pathway. J Immunol. 2017;198:2543–55. https://doi.org/10.4049/jimmunol.1600126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guttman-Yassky E, Brunner PM, Neumann AU, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 2018;78(872–81):e876.

    Google Scholar 

  62. Smolen J, Pangan AL, Emery P, et al. A phase 3 randomised, placebo-controlled, double-blind study of upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT- MONOTHERAPY): a randomized, placebo-controlled, double-blind phase 3 study. Lancet. 2019;393(10188):2303–11. https://doi.org/10.1016/S0140-6736(19)30419-2.

    Article  PubMed  Google Scholar 

  63. Genovese MC, Fleischmann R, Combe B, et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet. 2018;391(10139):2513–24.

    CAS  PubMed  Google Scholar 

  64. Sandborn W, Ghosh S, Panes J, et al. Efficacy and safety of upadacitinib as an induction therapy for patients with moderately-to-severely active ulcerative colitis: data from the phase 2b study u-achieve [OP 195]. United European Gastroenterology Week, Vienna, 20–24 October 2018.

  65. AbbVie, A study of the efficacy and safety of upadacitinib (ABT-494) in subjects with moderately to severely active Crohn’s disease who have inadequately responded to or are intolerant to conventional therapies but have not failed biologic therapy [ClinicalTrials.gov identifier NCT03345849]. https://clinicaltrials.gov/ct2/show/NCT03345849?term=NCT03345849&draw=2&rank=1. Accessed 31 July 2020

  66. Guttman-Yassky E, Silverberg JI, Thaci D, et al. Primary results from a phase 2b, randomized, placebo-controlled trial of upadacitinib for patients with atopic dermatitis [abstract no. 6533]. American Academy of Dermatology Annual Meeting, San Diego (CA), 16–20 February 2018.

  67. Voss J, Graff C, Schwartz A, et al. Pharmacodynamics of a novel Jak1 selective inhibitor in rat arthritis and anemia models and in healthy human subjects. Arthritis Rheumatol. 2013;65(10):S1015.

    Google Scholar 

  68. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13(4):234–43.

    CAS  PubMed  Google Scholar 

  69. Parmentier JM, Voss J, Graff C, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018;2:23.

    PubMed  PubMed Central  Google Scholar 

  70. Klunder B, Mittapalli RK, Mohamed MF, Friedel A, Noertersheuser P, Othman AA. Population pharmacokinetics of upadacitinib using the immediate-release and extended-release formulations in healthy subjects and subjects with rheumatoid arthritis: analyses of phase I–III clinical trials. Clin Pharmacokinet. 2019;58(8):1045–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Klunder B, Mohamed MF, Othman AA. Population pharmacokinetics of upadacitinib in healthy subjects and subjects with rheumatoid arthritis: analyses of phase I and II clinical trials. Clin Pharmacokinet. 2018;57:977–88.

    PubMed  Google Scholar 

  72. Mohamed MF, Camp HS, Jiang P, Padley RJ, Asatryan A, Othman AA. Pharmacokinetics, safety and tolerability of ABT-494, a novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin Pharmacokinet. 2016;55(12):1547–58.

    CAS  PubMed  Google Scholar 

  73. AbbVie Inc. Chicago (IL): AbbVie Inc.; 2018. AbbVie’s upadacitinib granted breakthrough therapy designation from the U.S. Food and Drug Administration for atopic dermatitis; 2018 [cited 2018 October 21]. https://news.abbvie.com/news/abbvies-upadacitinib-granted-breakthrough-therapydesignation-from-us-food-and-drug-administration-for-atopic-dermatitis.htm. Accessed 31 July 2020.

  74. Guttman-Yassky E, Thaçi D, Pangan AL, Hong HC, KA Papp, Reich K, et al. Upadacitinib in adults with moderate to severe atopic dermatitis: 16-week results from a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2019. https://doi.org/10.1016/j.jaci.2019.11.025(Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  75. AbbVie. Evaluation of upadacitinib in adolescent and adult patients with moderate to severe atopic dermatitis (eczema) (Measure Up 1). [ClinicalTrials.gov. Identifier: NCT03569293]. https://clinicaltrials.gov/ct2/show/NCT03569293?term=NCT03569293&draw=2&rank=1. Accessed 31 July 2020

  76. Kettle JG, Åstrand A, Catley M, et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013–2015, part 2. Expert Opin Ther Pat. 2017;27(2):145–61.

    CAS  PubMed  Google Scholar 

  77. Peeva E, Hodge MR, Kieras E, et al. Evaluation of a Janus kinase 1 inhibitor, PF-04965842, in healthy subjects: a phase 1, randomized, placebo-controlled, dose escalation study. Br J Clin Pharmacol. 2018;84(8):1776–88. https://doi.org/10.1111/bcp.13612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gooderham MJ, Forman SB, Bissonnette R, Beebe JS, Zhang W, Banfield C, et al. Efficacy and safety of oral Janus kinase 1 inhibitor abrocitinib for patients with atopic dermatitis: a phase 2 randomized clinical trial. JAMA Dermatol. 2019;155(12):1371–9. https://doi.org/10.1001/jamadermatol.2019.2855.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Simpson E, Sinclair R, Forman S, et al. Efficacy and safety of abrocitinib in patients with moderate-to-severe atopic dermatitis: results from the phase 3, JADE MONO-1 study. In: Oral presentation at the 28th Congress of the European Academy of Dermatology and Venereology (EADV), Madrid, 9–13 October 2019.

  80. Silverberg JI, Simpson EL, Thyssen JP, Gooderham M, Chan G, Feeney C, et al. Efficacy and safety of abrocitinib in patients with moderate-to-severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol. 2020;3:e201406. https://doi.org/10.1001/jamadermatol.2020.1406(Epub ahead of print).

    Article  Google Scholar 

  81. Pfizer. Study evaluating efficacy and safety of PF-04965842 and dupilumab in adult subjects with moderate to severe atopic dermatitis on background topical therapy (JADE Compare) [ClinicalTrials.gov identifier NCT03720470]. https://clinicaltrials.gov/ct2/show/NCT03720470?term=JADE+COMPARE&draw=2&rank=1. Accessed 31 July 2020

  82. Brunner PM, Guttman-Yassky E, Leung DY. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol. 2017;139:S65–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Papp KA, Menter MA, Raman M, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2016;174(6):1266–76.

    CAS  PubMed  Google Scholar 

  84. Genovese MC, Smolen JS, Weinblatt ME, et al. Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 2016;68(12):2857–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schmieder GJ, Draelos ZD, Pariser DM, et al. Efficacy and safety of the Janus kinase 1 inhibitor PF-04965842 in patients with moderate-to-severe psoriasis: phase II, randomized, double-blind, placebo-controlled study. Br J Dermatol. 2017;179(1):54–62.

    Google Scholar 

  86. van Vollenhoven RF, Fleischmann R, Cohen S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367(6):508–19.

    PubMed  Google Scholar 

  87. Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367(7):616–24.

    CAS  PubMed  Google Scholar 

  88. Verden A, Dimbil M, Kyle R, Overstreet B, Hoffman KB. Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors. Drug Saf. 2018;41(4):357–61. https://doi.org/10.1007/s40264-017-0622-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Torres.

Ethics declarations

Funding

No funding has been received for the preparation of this article.

Conflicts of Interest

Sandra Ferreira has no conflicts of interest that are directly relevant to the content of this article. Emma Guttman declares the following conflicts of interest: AbbVie, Almirall, Amgen, AnaptysBio, Asana Biosciences, Boehringer-Ingelheim, Cara Therapeutics, Celgene, Concert, DBV, Dermira, Dermavant, DS Biopharma, Eli Lilly, EMD Serono, Escalier, Galderma, Glenmark, Innovaderm, Janssen Pharmaceuticals, Kiniksa, Kyowa Kirin, LEO Pharma, Mitsubishi Tanabe, Novan, Pfizer, Ralexar, RAPT Therapeutics, Regeneron, Sanofi, Sienna Biopharma, UCB, and Union Therapeutics. Tiago Torres declares the following conflicts of interest: AbbVie, Amgen, Almirall, Arena Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Janssen, Biocad, LEO Pharma, Eli Lilly, MSD, Novartis, Pfizer, Samsung-Bioepis, Sanofi-Genzyme, and Sandoz.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Availability of data and material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

Sandra Ferreira, Emma Guttamn, and Tiago Torres had the idea for the article, performed the literature search and data analysis, and drafted and critically revised the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, S., Guttman-Yassky, E. & Torres, T. Selective JAK1 Inhibitors for the Treatment of Atopic Dermatitis: Focus on Upadacitinib and Abrocitinib. Am J Clin Dermatol 21, 783–798 (2020). https://doi.org/10.1007/s40257-020-00548-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00548-6

Navigation