Skip to main content

Bedside Diagnostics for Infections: A Guide for Dermatologists

Abstract

In dermatology, there are many bedside diagnostic tests that may aid in more rapid diagnosis and early initiation of appropriate therapy. When performed correctly, these bedside diagnostic tests can provide both sensitive and specific results. We discuss bedside diagnostic tests, such as the Tzanck smear, potassium hydroxide (KOH) preparation, and mineral oil preparation, with a specific focus on their use in diagnosing infectious dermatoses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Tzanck A, Bourgeois G. Le cytodiognostic immédiat en dermatologie. Arch Hosp. 1947;19:227–9.

    CAS  Google Scholar 

  2. Kelly B, Shimoni T. Reintroducing the Tzanck Smear. Am J Clin Dermatol. 2009;10:141–52.

    PubMed  Google Scholar 

  3. Singhi M, Gupta L. Tzanck smear: a useful diagnostic tool. Indian J Dermatol Venereol Leprol. 2005;71(4):295–9.

    PubMed  Google Scholar 

  4. Panwar H, Joshi D, Goel G, Asati D, Majumdar K, Kapoor N. Diagnostic utility and pitfalls of Tzanck smear cytology in diagnosis of various cutaneous lesions. J Cytol. 2017;34(4):179–82.

    PubMed  PubMed Central  Google Scholar 

  5. Grossman MC, Silvers DN. The Tzanck smear: can dermatologists accurately interpret it? J Am Acad Dermatol. 1992;27(3):403–5.

    CAS  PubMed  Google Scholar 

  6. Wheeland RG, Burgdorf WHC, Hoshaw RA. A quick Tzanck smear. J Am Acad Dermatol. 1983;8:258–9.

    CAS  PubMed  Google Scholar 

  7. Ruocco V, Ruocco E. Tzanck smear, an old test for the new millennium: when and how. Int J Dermatol. 1999;38:830–4.

    CAS  PubMed  Google Scholar 

  8. Folkers E, Oranje AP, Duivenvoorden JN, van der Veen JP, Rijaarsdam JU, Emsbroek JA. Tzanck smear in diagnosing genital herpes. Geitourin Med. 1988;64(4):249–54.

    CAS  Google Scholar 

  9. Durdu M. Cutaneous cytology and Tzanck smear test. Springer; 2019.

  10. Oranje AP, Folkers E. The Tzanck smear: old, but still of inestimable value. Pediatr Dermatol. 1988;5(2):127–9.

    CAS  PubMed  Google Scholar 

  11. Yaeen A, Ahmad QM, Farhana A, Shah P, Hassan I. Diagnostic value of Tzanck smear in various erosive, vesicular, and bullous skin lesions. Indian Dermatol Online J. 2015;6(6):381–6.

    PubMed  PubMed Central  Google Scholar 

  12. Ozcan A, Senol M, Saglam H, et al. Comparison of the Tzanck test and polymerase chain reaction in the diagnosis of cutaneous herpes simplex and varicella zoster virus infections. Int J Dermatol. 2007;46:1177–9.

    PubMed  Google Scholar 

  13. Schomogyi M, Wald A, Corey L. Herpes simplex virus–2 infection: an emerging disease? Infect Dis Clin N Am. 1998;12:47–61.

    CAS  Google Scholar 

  14. Ruocco E, Baroni A, Donnarumma G, Ruocco V. Diagnostic procedures in dermatology. Clin Dermatol. 2011;29:548–56.

    PubMed  Google Scholar 

  15. Hartman-Adams H, Banvard C, Juckett G. Impetigo: diagnosis and treatment. Am Fam Physician. 2014;90(4):229–35.

    PubMed  Google Scholar 

  16. Yasushi H. Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome. J Clin Investig. 2002;110(1):53–60.

    Google Scholar 

  17. Durdu M, Baba M, Seckin D. The value of Tzanck smear test in diagnosis of erosive, vesicular, bullous and pustular skin lesions. J Am Acad Dermatol. 2008;59(6):958–64.

    PubMed  Google Scholar 

  18. McCray MK, Esterly NB. Blistering distal dactylitis. J Am Acad Dermatol. 1981;5(5):592–4.

    CAS  PubMed  Google Scholar 

  19. American Medical Association. Multistate outbreak of sporotrichosis in seedling handlers, 1988. Arch Dermatol. 1989;125:170.

    Google Scholar 

  20. Vasquez-Del-Mervado E, Arenas R, Padilla-Desgarenes C. Sporotrichosis. Clin Dermatol. 2012;30(4):437–43.

    Google Scholar 

  21. Barros MBL, de Almeida PR, Schubach AO. Sporothrix schenckii and sporotrichosis. Clin Microbiol Rev. 2011;24:633–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Civila ES, Bonasse J, Conti-Diaz IA, Vignale RA. Importance of the direct fresh examination in the diagnosis of cutaneous sporotrichosis. Int J Dermatol. 2004;43:808–10.

    PubMed  Google Scholar 

  23. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin N Am. 2016;30(1):179–206.

    Google Scholar 

  24. Sun H-Y, Alexander BD, Lortholary O, Dromer F, Forrest GN, Lyon GM, et al. Cutaneous cryptococcosis in solid organ transplant recipients. Med Mycol. 2010;48:785–91.

    PubMed  Google Scholar 

  25. Baumgarten K, Valentine V, Garcia-Diaz J. Primary cutaneous cryptococcosis in a lung transplant recipient. South Med J. 2004;67(7):692–5.

    Google Scholar 

  26. Hicks MJ, Flaitz CM, Cohen PR. Perioral and cutaneous umbilicated papular lesions in acquired immunodeficiency syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 1997;83:189–91.

    CAS  Google Scholar 

  27. Farber SA, Micheletti RG. Cryptococcal meningitis presenting with headache and a pustular eruption in a heart transplant patient. Transpl Infect Dis. 2015;17:716–8.

    CAS  PubMed  Google Scholar 

  28. Borton LK, Wintroub BU. Disseminated cryptococcosis presenting as herpetiform lesions in a homosexual man with acquired immunodeficiency syndrome. J Am Acad Dermatol. 1984;10:387–90.

    CAS  PubMed  Google Scholar 

  29. Fridlington E, Colome-Grimmer M, Kelly E, Kelly BC. Tzanck smear as a rapid diagnostic tool for disseminated cryptococcal infection. Arch Dermatol. 2006;142:25–7.

    PubMed  Google Scholar 

  30. Chu JH, Feudtner C, Heydon K, Walsh TJ, Zaoutis TE. Hospitalizations for endemic mycoses: a population-based national study. Clin Infect Dis. 2006;42:822–5.

    PubMed  Google Scholar 

  31. Cohen PR, Bank DE, Silvers DN, Grossman ME. Cutaneous lesions of disseminated histoplasmosis in human immunodeficiency virus-infected patients. J Am Acad Dermatol. 1990;23:422–8.

    CAS  PubMed  Google Scholar 

  32. Stenn F. Cave disease or speleonosis. Am Med Assoc Intern Med. 1960;105(2):181–3.

    CAS  Google Scholar 

  33. Lesher JL Jr, Kight FJ. Tzanck preparation as a diagnostic aid in disseminated histoplasmosis. J Am Acad Dennatol. 1986;15(3):534–5.

    Google Scholar 

  34. Kauffman CA. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev. 2007;20(1):115–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Castillo CG, Kauffman CA, Miceli MH. Blastomycosis. Infect Dis Clin N Am. 2016;30(1):247–64.

    Google Scholar 

  36. McBride JA, Gauthier GM, Klein BS. Clinical manifestations and treatment of blastomycosis. Clin Chest Med. 2017;38(3):435–49.

    PubMed  PubMed Central  Google Scholar 

  37. Durdu M, Baba M, Seckin D. More experiences with the Tzanck smear test: cytologic findings in cutaneous granulomatous disorders. J Am Acad Dermatol. 2009;61(3):441–50.

    PubMed  Google Scholar 

  38. Baumgardner DJ. Use of urine antigen testing for blastomyces in an integrated health system. J Patient Cent Res Rev. 2018;5(2):176–82.

    PubMed  PubMed Central  Google Scholar 

  39. Rodrigues JC, Godinho JL, de Souza W. Biology on human pathogenic trypanosomatids: epidemiology, lifecycle, and ultrastructure. Subcell Biochem. 2014;74:1–42.

    PubMed  Google Scholar 

  40. Boggild AK, Ramos AP, Espinosa D, Valencia BM, Veland N, Miranda-Verastegui C, et al. Clinical and demographic stratification of test performance: a pooled analysis of five laboratory diagnostic methods for American cutaneous leishmaniasis. Am J Trop Med Hyg. 2010;83:345–50.

    PubMed  PubMed Central  Google Scholar 

  41. Reithinger R, Dujardin J-C. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007;45:21–5.

    CAS  Google Scholar 

  42. Ramirez JR, Agudelo S, Muskus C, et al. Diagnosis of cutaneous leishmaniasis in Colombia: the sampling site within lesions influences the sensitivity of parasitologic diagnosis. J Clin Microbiol. 2000;38(10):3768–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Saab M, El Hage H, Charafeddine K, et al. Diagnosis of cutaneous leishmaniasis: why punch when you can scrape? Am J Trop Med Hyg. 2015;92:518–22.

    PubMed  PubMed Central  Google Scholar 

  44. Micheletti RG, Dominguez AR, Wanat KA. Bedside diagnostics in dermatology: parasitic and noninfectious diseases. J Am Acad Dermatol. 2017;77:221–30.

    PubMed  Google Scholar 

  45. Sousa AQ, Pompeu NM, Frutuoso MS, Lima JW, Tinel JM, Pearson RD. Press imprint smear: a rapid, simple, and cheap method for the diagnosis of cutaneous leishmaniasis caused by Leishmania (Viannia) baziliensis. Am J Trop Med Hyg. 2014;91(5):905–7.

    PubMed  PubMed Central  Google Scholar 

  46. Hengge UR, Currie BJ, Jäger G, Lupi O, Schwartz RA. Scabies: a ubiquitous neglected skin disease. Lancet Infect Dis. 2006;6:769–79.

    PubMed  Google Scholar 

  47. Hicks MI, Elston DM. Scabies. Dermatol Ther. 2009;22(4):279–92.

    PubMed  Google Scholar 

  48. Stiff KM, Cohen PR. Scabies surrepticius: scabies masquerading as pityriasis rosea. Cureus. 2017;9:e1961.

    PubMed  PubMed Central  Google Scholar 

  49. Cohen PR. Scabies masquerading as bullous pemphigoid: scabies surrepticius. Clin Cosmet Investig Dermatol. 2017;10:317–24.

    PubMed  PubMed Central  Google Scholar 

  50. Werbel T, Hinds BR, Cohen PR. Scabies presenting as cutaneous nodules or malar erythema: reports of patients with scabies surrepticius masquerading as prurigo nodularis or systemic lupus erythematosus. Dermatol Online J. 2018;24.

  51. Muller G, Jacobs PH, Moore NE. Scraping for human scabies. Arch Dermatol. 1973;107:70.

    CAS  PubMed  Google Scholar 

  52. Hahm JE, Kim CW, Kim SS. The efficacy of a nested polymerase chain reaction in detecting the cytochrome c oxidase subunit 1 gene of Sarcoptes scabiei var hominis for diagnosing scabies. Br J Dermatol. 2018;179:889–95.

    CAS  PubMed  Google Scholar 

  53. Jacks SK, Lewis EA, Witman PM. The curette prep: a modification of the traditional scabies preparation. Pediatr Dermatol. 2012;29:544–5.

    PubMed  Google Scholar 

  54. Austin VH. Mineral oil versus KOH for sarcoptes. J Am Acad Dermatol. 1982;7:555.

    Google Scholar 

  55. Tolkachjov SN, Davis MDP, Yiannias JA. Crusted (Norwegian) scabies: nine-month course with iatrogenic immunosuppression. J Drugs Dermatol. 2018;17:1131–3.

    PubMed  Google Scholar 

  56. Argenziano G, et al. Epiluminescence microscopy. A new approach to in vivo detection of Sarcoptes scabiei. Arch Dermatol. 1997;133:751–3.

    CAS  PubMed  Google Scholar 

  57. Prins C, et al. Dermoscopy for the in vivo detection of Sarcoptes scabiei. Dermatology. 2004;208:241–3.

    CAS  PubMed  Google Scholar 

  58. Walter B, et al. Comparison of dermoscopy, skin scraping, and the adhesive tape test for the diagnosis of scabies in a resource-poor setting. Arch Dermatol. 2011;147:468–73.

    PubMed  Google Scholar 

  59. Park JH, et al. The diagnostic accuracy of dermoscopy for scabies. Ann Dermatol. 2012;24:194–9.

    PubMed  PubMed Central  Google Scholar 

  60. Rufli T, Mumcuoglu Y. The hair follicle mites Demodex folliculorum and Demodex brevis: biology and medical importance A review. Dermatologica. 1981;162(1):1–11.

    CAS  PubMed  Google Scholar 

  61. Lacey N, Kavanagh K, Tseng SC. Under the lash: Demodex mites in human diseases. Biochemist. 2009;31(4):2–6.

    PubMed  Google Scholar 

  62. Lacey N, Ní Raghallaigh S, Powell FC. Demodex mites—commensals, parasites or mutualistic organisms? Dermatology. 2011;222(2):128–30.

    PubMed  Google Scholar 

  63. Burns DA. Follicle mites and their role in disease. Clin Exp Dermatol. 1992;17(3):152–5.

    CAS  PubMed  Google Scholar 

  64. Schaller M, Gonser L, Belge K, Braunsdorf C, Nordin R, Scheu A, Borelli C. Dual anti-inflammatory and anti-parasitic action of topical ivermectin 1% in papulopustular rosacea. J Eur Acad Dermatol Venereol. 2017;31(11):1907–11.

    CAS  PubMed  Google Scholar 

  65. Moran EM, Foley R, Powell FC. Demodex and rosacea revisited. Clin Dermatol. 2017;35(2):195–200.

    PubMed  Google Scholar 

  66. Aslanzadeh J, Roberts GD. Direct microscopic examination of clinical specimens for the laboratory diagnosis of clinical specimens for the laboratory diagnosis of fungal infections. Clin Microbiol Newsl. 1991;12:185–92.

    Google Scholar 

  67. Singh S, Beena PM. Comparative study of different microscopic techniques and culture media for the isolation of dermatophytes. Indian J Med Microbiol. 2003;21(1):21–4.

    CAS  PubMed  Google Scholar 

  68. Shi VY, Lio PA. In-office diagnosis of cutaneous mycosis: a comparison of potassium hydroxide, Swartz-Lamkins, and chlorazol black E fungal stains. Cutis. 2013;92:E8–E10.

    PubMed  Google Scholar 

  69. Afshar P, Larijani LV, Rouhanizadeh H. A comparison of conventional rapid methods in diagnosis of superficial and cutaneous mycoses based on KOH, Chicago sky blue 6B and calcofluor white stains. Iran J Microbiol. 2018;10(6):433–40.

    PubMed  PubMed Central  Google Scholar 

  70. Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12(7):317–24.

    CAS  PubMed  Google Scholar 

  71. Gupta AK, Batra R, Bluhm R, Faergemann J. Pityriasis versicolor. Dermatol Clin. 2003;21:413–29.

    PubMed  Google Scholar 

  72. Hudson A, Sturgeon A, Peiris A. Tinea versicolor. JAMA. 2018;320:1396.

    PubMed  Google Scholar 

  73. Wietzman I, Padhye AA. Dermatophytes: gross and microscopic. Dermatol Clin. 1996;14:9–22.

    Google Scholar 

  74. Gupta AK, Hofstader SLR, Adam P, Summerbell RC. Tinea capitis: an overview with emphasis on management. Pediatr Dermatol. 1999;16:171–89.

    CAS  PubMed  Google Scholar 

  75. Bronson DM, Desai DR, Barsky S, Foley SM. An epidemic of infection with Trichophyton tonsurans revealed in a 20-year survey of fungal infections in Chicago. J Am Acad Dermatol. 1983;8:322–30.

    CAS  PubMed  Google Scholar 

  76. Gram C. Ueber die isolirte Färbung der Schizomyceten in Schnitt-und Trockenprāparatan. Fortschritte der Medicin. 1884;2:185–9.

    Google Scholar 

  77. Steinbach WJ, Shetty AK. Use of the diagnostic bacteriology laboratory: a practical review for the clinician. Postgrad Med J. 2001;77:148–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. U.S. Food and Drug Administration. CLIA—Clinical Laboratory Improvement Amendments. 2020. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCLIA/Search.cfm. Accessed 2 Jan 2020.

  79. Reynolds J, Moyes RB, Breakwell DP. Differential staining of bacteria: acid fast stain. Curr Protoc Microbiol. 2009. Appendix 3: Appendix 3H.

  80. Laga AC, Milner DA Jr, Granter SR. Utility of acid-fast staining for detection of mycobacteria in cutaneous granulomatous tissue reactions. Am J Clin Pathol. 2014;141(4):584–6.

    PubMed  Google Scholar 

  81. Kathuria P, Agarwal K, Karonne RV. The role of fine-needle aspiration cytology and Ziehl Neelsen staining in the diagnosis of cutaneous tuberculosis. Diag Cytopathol. 2006;34:826–9.

    Google Scholar 

  82. Banerjee S, Biswas N, Kanti Das N, Sil A, Ghosh P, Hasonoor Raja AH, Dasqupta S, Kanti Datta P, Bhattacharya B. Diagnosing leprosy: revisiting the role of the slit-skin smear with critical analysis of the applicability of polymerase chain reaction in diagnosis. Int J Dermatol. 2011;50(12):1522–7.

    CAS  PubMed  Google Scholar 

  83. Kumar B, Kaur S. Selection of sites for slit skin smear in untreated leprosy patients. Int J Lepr Other Mycobact Dis. 1986;54:540–4.

    CAS  PubMed  Google Scholar 

  84. Wood RW. Physical optics. New York: The Macmillan Company; 1905.

    Google Scholar 

  85. Sharma S, Sharma A. Robert Williams Wood: pioneer of invisible light. Photodermatol Photoimmunol Photomed. 2016;32:60–5.

    PubMed  Google Scholar 

  86. Sarkany I, Taplin D, Blank H. The etiology and treatment of erythrasma. J invest Dermatol. 1961;37:283–90.

    CAS  PubMed  Google Scholar 

  87. Pagnoni A, Kligman AM, Kollias N, Golberg S, Stoudemayer T. Digital fluorescence photography can assess the suppressive effects of benzoyl peroxide on Propionibacterium acnes. J Am Acad Dermatol. 1999;51(5 Pt 1):710–6.

    Google Scholar 

  88. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA. The structure of pyoverdine, the siderophore of Pseudomonas aeruginosa. Tetrahedron Lett. 1983;24(44):4877–80.

    CAS  Google Scholar 

  89. Prevost E. The rise and fall of fluorescent tinea capitis. Pediatr Dermatol. 1983;1(2):127–33.

    CAS  PubMed  Google Scholar 

  90. Gupta AK, Mays RR, Versteeg SG, Piraccini BM, Shear NH, Piguet V, Tosti A, Friedlander SF. Tinea capitis in children: a systematic review of management. J Eur Acad Dermatol Venereol. 2018;32(12):2264–74.

    CAS  PubMed  Google Scholar 

  91. Centers for Disease Control and Prevention. Clinical Laboratory Improvement Amendments (CLIA): Test Complexities. 2018. https://www.cdc.gov/clia/test-complexities.html. Accessed 2 Jan 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent C. Kelly.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Brent Kelly, Frank Winsett, and Shaunak Patel have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Winsett, F.T., Patel, S.G. & Kelly, B.C. Bedside Diagnostics for Infections: A Guide for Dermatologists. Am J Clin Dermatol 21, 697–709 (2020). https://doi.org/10.1007/s40257-020-00526-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00526-y